
Mechanism and Machine Theory 167 (2022) 104555

Available online 23 September 2021
0094-114X/© 2021 Elsevier Ltd. All rights reserved.

A compliant guiding mechanism utilizing orthogonally oriented 
flexures with enhanced stiffness in degrees-of-constraint 

Ruiqi Li a, Zhijun Yang a,c,*, Bingyu Cai a, Guimin Chen b, Baisheng Wu a, Yutai Wei a 

a State Key Laboratory for Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 
510006, China 
b State Key Laboratory for Manufacturing Systems Engineering and Shanxi Key Lab of Intelligent Robots, Xi’an Jiaotong University, Xi’an 710049, 
China 
c Foshan Huadao Ultra Precision Tech. LTD.，Foshan 528225, China   

A R T I C L E  I N F O   

Keywords: 
Nonlinear deflection 
Stress constraint 
Large stroke 
Orthogonally oriented flexures 
Energy method 

A B S T R A C T   

The large stroke is usually realized by lowering stiffness along the degrees of freedom, which 
usually leads to a decrease of stiffness along the degrees of constraint. A high stiffness ratio is 
crucial for reducing the deflections induced by disturbances such as eccentric force and the 
gravity of the load. Besides, the fatigue life of these mechanisms will be shortened due to the large 
stress caused by the large deflection. This paper proposed a new guiding mechanism using 
orthogonally oriented flexures to improve the stiffness along the degrees of constraint and reduce 
stress concentration. The energy method is utilized to obtain the kinetostatic model of the guiding 
mechanism by taking the nonlinear deflection into account, based on which the mechanism is 
optimized by simultaneously considering the topology and size. As compared to the performance 
of traditional design obtained through the same optimization objective and constraints, the 
optimal design effectively improves the stiffness along the degrees of constraint, whose accuracy 
is also validated by the finite element analysis results. Experimental results show that the pro
posed mechanism increases the stiffness ratio Kaz/Kx by 3.54 times compared to the traditional 
mechanism.   

1. Introduction 

Compliant mechanisms, capable of providing nanometer resolution by eliminating wear, friction and backlash, have been widely 
used in various precision devices for precision positioning [1–7], micro-manipulation [8–10], microgripper [11], and microscopy 
[12–14], which are commonly driven by linear actuators such as piezoelectric actuators (PZT) [15–17] and voice coil motors (VCM) [5, 
13,18,19]. A PZT actuator exhibits high-speed responses for its high stiffness and can provide large driving forces, while the stroke is 
limited to 0.1% of its length. Therefore, an amplifying compliant mechanism is usually employed to extend the travel range of the PZT 
actuator, and a guiding compliant mechanism is designed to minimize the parasitic motions of the amplifying mechanism along its 
degrees of constraint (DOC) [17,20–23]. 

A VCM provides a larger actuation stroke, but the travel range is limited by the actuation force required by the compliant 
mechanism. Thus, leaf springs are often chosen for the design of linear guiding mechanisms to reduce the stiffness along the guiding 
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direction [24–29]. Compliant compound parallelogram mechanisms (CCPM) are the typical guiding mechanisms designed with leaf 
springs. Hao and Kong used CCPM to design a large-range XY compliant parallel manipulator in Ref. [29], whose motion range reaches 
20 × 20 mm. Ref. [25] extended the travel range of a linear-motion mechanism by utilizing the compressed-soft effect of leaf spring to 
reduce the stiffness along its degrees of freedom (DOF). However, low stiffness along the DOC is also prone to occur in these mech
anisms for the large ratio of length to thickness of leaf springs (l/t), which leads to an increase of deflection caused by the disturbing 
loads. Therefore, the present CCPMs have limited efficiency in some applications with additional loads along the DOCs. To enhance the 
out-of-plane stiffness of CCPMs, Ref. [29] increased the beam number and utilized spatial compliant legs. Although the out-of-plane 
stiffness is improved in this way, the driving stiffness is also increased. For the compliant mechanism subjected to torsional moment 
due to the deviation of driving force from the motion center [30], improving the ratio of stiffness along the DOCs to it along the DOF is 
a more efficient method to decrease the disturbance displacement. 

On the other hand, the maximum stress of compliant elements has a crucial influence on the fatigue life of compliant mechanisms, 
which have been well researched for the notch flexure hinges in Ref. [31]. The sudden shape change of leaf springs generates notable 
stress concentration characteristics which enlarged the maximum stress of mechanisms greatly. Therefore, Ref. [32] investigates the 
scope for stress reduction through shape optimization of the leaf springs, in which the maximum stress is calculated under the small 
deflection assumption. In fact, the load-deflection relationship of CCPMs presents obvious nonlinearities for the initial internal axial 
force [26]. The nonlinearity and stress concentration characteristics of leaf springs without corner curves make it difficult to evaluate 
the maximum stress at the first stage of mechanism design. In order to model the stress of leaf springs in large-stroke applications, a 
nonlinear model of corner-fillet leaf springs (CFLS) is provided in Ref. [33] in which the induced fillet improved the maximum stress 
effectively. 

Considering the limitations of current design methods for guiding mechanisms, this article proposed a new guiding mechanism 
utilizing orthogonally oriented CFLSs and hybrid leaf springs (HLSs). Although it is a usual way to neglect the effect of small fillets 
during design, tiny fillets have limited improvement in the reduction of maximum stress. Thus nonlinear models of CFLSs and HLSs are 
adopted in this work for the accurate stress design. The nonlinear energy formula of the guiding mechanism is provided to obtain the 
kinetostatic model by taking the nonlinear deflection of CFLSs and HLSs into account, and the corresponding nonlinear stress is 
calculated using the nonlinear model. The simultaneous optimal design of topology and size is carried out to minimize the maximum 
stress and mass of the mechanism by determining the optimal group number and parameters of CFLSs and HLSs. 

The main contents of the paper are arranged as follows: Section 2 introduces the design of the new guiding mechanism in detail. The 
kinetostatic model of the guiding mechanism is established and the nonlinear stress is calculated in Section 3. The optimized design is 
illustrated in Section 4 and a design case is provided to explain its efficiency. The performance of the optimal design is verified using 
the finite element analysis (FEA) method in Section 5. Comparison is accomplished in Section 6 to demonstrate the improvement of the 
proposed mechanism. Experimental results are obtained in Section 7. Conclusions are drawn in the last section of this paper. 

Fig. 1. Guiding mechanism with the same topology (a) NFHs type, (b) leaf-springs type, (c) leaf-springs type with intermediate semi-rigid elements, 
and (d) CFLSs type. 

Fig. 2. Cutaway view of the guiding mechanism designed with CFLSs and HLSs.  
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2. Design 

Fig. 1 shows several compliant guiding mechanism designs of parallelogram structures. The guiding mechanism utilizing notch 
flexure hinges (NFHs), as shown in Fig. 1(a), provides high stiffness and high frequency, but the travel range of these mechanisms is 
limited to several micrometers due to the low deflection capability of NFHs. Leaf-springs provide good compliance for the guiding 
mechanisms as shown in Fig. 1(b), but the stiffness along the DOC of these guiding mechanisms is smaller than that of the NFHs-based 
guiding mechanisms. Although increasing the width of leaf springs can enhance the stiffness along the DOC and avoid high driving 
stiffness, it’s adverse for the compact design. Leaf-springs with intermediate semi-rigid elements [24,34] were suggested to improve 
the stiffness of leaf springs along the DOC, as shown in Fig. 1(c), but this would increase the stiffness along the DOF and intensify the 
stress concentration due to the sudden cross-section change. Although CFLSs were developed to reduce the stress concentration of the 
guiding mechanism, as shown in Fig. 1(d), the improvement with the stiffness along the DOC is restricted by the compact structure. 

To improve the stiffness along the DOC and lower the stress concentration of the leaf-spring-based mechanism, a new guiding 
mechanism utilizing orthogonally oriented CFLSs and HLSs is designed, as depicted in Fig. 2. CFLSs are horizontally placed in a 
symmetric configuration to eliminate the parasitic motions and provide a relatively large motion between the rigid frame and central 
stage. Two pairs of HLSs are arranged vertically on both ends of the central stage along the DOF direction to strengthen the payload 
stiffness and avoid pitch motion. 

3. Analytical modeling of the guiding mechanism 

The driving force applied on the guiding mechanism causes remarkable tension stress in the deflected CFLSs and HLSs, leading to 
stress stiffening of the mechanism along the DOF. Therefore, the load-displacement relationship of the guiding mechanism presents a 
non-negligible nonlinearity. 

3.1. Deflection of CFLS 

As shown in Fig. 3, the radius of fillets, the minimum thickness, the length, and the width of a CFLS are denoted as r1, t1, l1, and w1, 
respectively. 

The loads applied on CFLS and the corresponding deflections are normalized as: 

m1 =
My1l1

E1I1
, f1 =

Fx1l2
1

E1I1
, p1 =

Fz1l2
1

E1I1
, ux1 =

▵x1

l1
, uz1 =

▵z1

l1
(1)  

where I1 is the second moment of area about the Y-axis of CFLS, and E1 is the Young’s modulus of the material. 
By taking η1 = r1/l1, the nonlinear deflection of a fixed-free CFLS can be calculated using the following equations [33]: 

[
f1
m1

]

=

[
k′ 0

11 k′ 0
12

k′ 0
12 k′ 0

13

][
ux1
θ1

]

+ p1

⎡

⎢
⎢
⎣

1.2
λ1

− 0.1

− 0.1
2λ1

15

⎤

⎥
⎥
⎦

[
ux1
θ1

]

(2)  

Fig. 3. Nonlinear deflection of the fixed-free CFLS.  
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uz1 =
p1λ1

12b2
1
−

1
2
[ ux1 θ1 ]

⎡

⎢
⎢
⎣

1.2
λ1

− 0.1

− 0.1
2λ1

15

⎤

⎥
⎥
⎦

[
ux1
θ1

]

(3)  

where k′ 0
11 =

2g11(a1)η1+1
H1

, k′ 0
12 = −

1+2g11(a1)η1
2H1

, k′ 0
13 =

1+3g11(a1)η1+3g12(a1)η2
1+6g13(a1)η3

1
3H1

, 

H1 =

(
1
3 + g11(a1)η1 + g12(a1)η2

1 + 2g13(a1)η3
1

)(

2g11(a1)η1 + 1) −
(

1
2 + g11(a1)η1

)2
, k′ 0

14 =
12b2

1
λ1

, λ1 = (1 + 2g14(a1)η1), and 

expressions of g1i (i= 1,2, 3, 4) are listed in Appendix A. 
The bending deflection of a fixed-guided CFLS in the Y-axis direction is in a small range which can be obtained using Castigliano’s 

second theorem. For the situation that the width is large than 1/5 of the length, the shearing effect has a remarkable influence on the 
deflection. We have: 

▵y1 =
3t2

1Fy

E1w3
1

∫b1

0

(b1 − 2z)2

ζ(z)
dz +

6Fy

5Gw1

∫b1

0

1
ζ(z)

dz (4)  

where G = E1/(2(1 + μ)) is the shear modulus and μ is the Poisson’s ratio. Then the bending stiffness in the Y-axis direction is yielded: 

Ky1 = E1w3
1

/(
3t2

1A1(a1, b1)+ 2.4(1+ μ)w2
1λ1b1

)
(5)  

where the expression of A1 is shown in Appendix A. 
The torsional stiffness for a CFLS around the Z-axis can be calculated using the following equation: 

Kaz1 = f (δ1)

/⎛

⎝
∫l1

0

7
2Gw1t(x)3 dx+

∫l1

0

7
2Gw3

1t(x)
dx

⎞

⎠(δ1 = t1 /w1) (6)  

where f(δ) is defined as Eq. (7) according to Ref. [35]. 

f (δ) =
1.17δ2 + 2.19δ + 1.17

δ2 + 2.61δ + 1
(7)  

3.2. Deflection of HLS 

The radius of fillets, the minimum thickness, the length, and the width of HLS are defined as r2, t2, l2, and w2, respectively, as shown 
in Fig. 4. The thickness function of HLS along the axial direction is expressed as (a2 = r2/t2, b2 = l2/t2): 

ζ(y) =

⎧
⎪⎨

⎪⎩

2
(

a2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
2 − (a2 − y)2

√ )
+ 1, 0 < y < a2

1, a2 < y < b2 − a2(

a2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
2 − (y − b2 + a2)

2
√ )

+ 1, b2 − a2 < y < b2

(8) 

The loads applied on HLS and the corresponding deflections are normalized: 

Fig. 4. Nonlinear deflection of the fixed-free HLS.  
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m2 =
Mz2l2

E2I2
, f2 =

Fx2l2
2

E2I2
, p2 =

Fy2l2
2

E2I2
, ux2 =

▵x2

l2
, uy2 =

▵y2

l2
(9)  

where I2 is the second moment of area about the Z-axis of HLS and E2 is the Young’s modulus of the material. 
A number of methods have been developed for the nonlinear deflection of leaf spring, such as elliptic integral solutions, beam 

constraint model, and pseudo-rigid-body models (PRBM). But these methods can’t be used to predict the nonlinear deflection of flexure 
hinge with variable cross-section. Ref. [33] provides a nonlinear model for CFLS (NCFLS) to improve the stress concentration of leaf 
spring by considering the influence of corner-fillet on the nonlinear deflection. According to the NCFLS, the nonlinear stiffness of the 
flexure hinge is consists of the elastic stiffness and the stiffening/compressed stiffness caused by the axial load. Thus, the 
load-deflection relationship of HLS can be expressed as: 

[
f2
m2

]

=

[
k′ 0

21 k′ 0
22

k
′ 0
22 k

′ 0
23

][
ux2
θ2

]

+ p2

[
k′ 1

21 k′ 1
22

k
′ 1
22 k

′ 1
23

][
ux2
θ2

]

(10)  

uy2 =
p

k′ 0
24

−
1
2
[ ux2 θ2 ]

[
k′ 1

21 k′ 1
22

k
′ 1
22 k

′ 1
23

][
ux2
θ2

]

(11)  

where k
′ 0
2i (i = 1,2,3,4) is the elastic stiffness coefficients of HLS, which is calculated by using Castigliano’s theorem. 

The load-stiffening coefficients can be expressed as: 

k′ 1
21 =

1.2
λ2

, k′ 1
22 = − 0.1, k′ 1

23 =
2λ2

15
(12)  

where λ2 is the length-decrease coefficient of HLS and can be calculated using the following integral: 

λ2 =
1
b2

∫b2

0

1
ζ(y)

dy (13)  

By taking η2 = r2/l2, the nonlinear deflection of HLS can be expressed as the following equations: 

[
f2

m2

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(g11(a2) + g21(a2))η2 + 1
H2

−
1 + 2g11(a2)η2 + (g12(a2) + g22(a2))

2H2

−
1 + 2g11(a2)η2 + (g12(a2) + g22(a2))

2H2

1 + 3g11(a2)η2 + 3g12(a2)η2
2 + 3(g13(a2) + g23(a2))η3

2

3H2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

[
ux2

θ2

]

+p2

⎡

⎢
⎢
⎢
⎣

1.2
1 + (g14(a2) + g24(a2))η2

− 0.1

− 0.1

2((g14(a2) + g24(a2))η2)

15

⎤

⎥
⎥
⎥
⎦

[ ux2

θ2

]

(14)  

uy2 =
p2(1 + (g14(a2) + g24(a2))η2)

12b2
2

−
1
2
[ ux2 θ2 ]

⎡

⎢
⎢
⎢
⎣

1.2
1 + (g14(a2) + g24(a2))η2

− 0.1

− 0.1
2(1 + (g14(a2) + g24(a2))η2)

15

⎤

⎥
⎥
⎥
⎦

[
ux2
θ2

]

(15)  

whereH2 =

(
1
3 + g11(a2)η2 + g12(a2)η2

2 + (g13(a2) + g23(a2))η3
2

)(

(g11(a2) + g21(a2))η2 + 1) −
(

1
2 + g11(a2)η2 +

1
2 (g12(a2)

+g22(a2))

)2
.The expressions of g2i (i= 1, 2,3, 4) are listed in Appendix A. 

The bending deflection of HLS in the Z-axis direction is considered small and can be obtained using Castigliano’s second theorem: 

▵z2 =
3t2

2Fz

E2w3
2

∫b2

0

(b2 − 2y)2

ζ(y)
dy +

12(1 + μ)Fz

5E2w2

∫b2

0

1
ζ(y)

dy (16) 

Then the stiffness of an HLS in the Z-axis direction is yielded: 

Kz2 = E2w3
2

/(
3t2

2G1 + 2.4(1+ μ)w2
2λ2b2

)
(17)  

where G1 = (A1(a2,b2) + A2(a2,b2))/2, A2 is shown in Appendix A. 
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The torsional stiffness for an HLS around the Y-axis can be calculated using the following equation: 

Kay2 = f (δ2)

/⎛

⎝
∫l2

0

7
2Gw2t(x)3 dx+

∫l2

0

7
2Gw3

2t(x)
dx

⎞

⎠(δ2 = t2 /w2) (18)  

3.3. Kinetostatic model of the guiding mechanism 

The planer deflection of CCPMs based on flexure beams was investigated in Ref. [28], while the proposed methods can not capture 
the coupling of spatial deflections. The use of energy methods can avoid internal loads and considerably reduce the mathematical 
complexity in the analysis of compliant mechanisms. Hence, the energy method is adopted to obtain the load-deflection relationship of 
the guiding mechanism. As shown in Fig. 5, the loads applied on the central stage and the corresponding displacement are defined as 
Fx, Fy, Fz, My, Mz, Δx, Δy, Δz, θy, θz, respectively. 

When the central stage is subjected to the combined loads, CFLSs and HLSs are in torsion, tension, and bending along the DOF and 
DOCs. The deflections of CFLSs are given by: 

Δx1 = Δx, Δy1j = Δy ± θyR1j, Δz1j = ±Δz ± θzR1j, θy1 = θy, θz1 = θz (19)  

where R1j is the distance of CFLS to the torsion axis (for n = 2i or n = 2i ± 1, j = 1…i). 
The deflections of HLSs are given by: 

Δx2 = Δx, Δy2 = ±Δy ± θzR2, Δz2 = Δz ± θyR2, θy2 = θy, θz2 = θz (20)  

where R2 is the distance of HLSs to the torsional axis. 
The strain energy of CFLSs is yielded by combining Eqs. (2),(3),(5),(6), and (19): 

V1 =
Kz1

2
∑i

j=1

[(

−
Δz

l1
−

θyR1j

l1
+ s1

)2

+

(

−
Δz

l1
+

θyR1j

l1
+ s1

)2

+

(
Δz

l1
−

θyR1j

l1
+ s1

)2

+

(
Δz

l1
+

θyR1j

l1
+ s1

)2]

+
nEI1

l1

(

k
′ 0
11

(
Δx

l1

)2

+ 2k
′ 0
12

(
Δx

l1

)

θy + k
′ 0
13θ2

y

)

+ nKaz1θ2
z + Ky1

∑i

j=1

[(
Δy

l1
−

θzR1j

l1

)2

+

(
Δy

l1
+

θzR1j

l1

)2]
(21)  

where Kz1 =
k
′
0

14EI1
l1 

and 

s1 =
1
2

[

k′1
11

(
Δx

l1

)2

+ 2k′1
12

(
Δx

l1

)

θy + k′1
13θ2

y

]

.

The strain energy of HLSs is yielded by combining Eqs. (14),(15),(17),(18), and (20): 

V2 =
Ky2

2

[(

−
Δy

2
−

θzR2

l2
+ s2

)2

+

(

−
Δy

2
+

θzR2

l2
+ s2

)2

+

(
Δy

2
−

θzR2

l2
+ s2

)2

+

(
Δy

2
+

θzR2

l2
+ s2

)2]

+
2EI2

l2

(

k
′ 0
21

(
Δx

l2

)2

+ 2k
′ 0
22

(
Δx

l2

)

θz + k
′ 0
23θ2

z

)

+
2Kz2

2

[(
Δz

l2
−

θyR2

l2

)2

+

(
Δz

l2

θyR2

l2

)2]

+ 2Kay2θ2
y

(22) 

Fig. 5. Guiding mechanism subjected to combined loads.  
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where Ky2 =
k
′
0

24EI2
l2 

and s2 = 1
2

[

k
′ 1
21

(
Δx
l2

)2
+ 2k

′ 1
22

(
Δx
l2

)

θz + k
′ 1
23θ2

z

]

. 

Thus, the nonlinear strain energy of the guiding mechanism is given as: 

Vg = V1 + V2 (23) 

Then the formulations for loads are obtained by utilizing Castigliano’s first theorem. By recognizing that θy ≪ Δx
l1 

and θz ≪ Δx
l1

, the 
load-displacement relationship of the guiding mechanism can be simplified as: 

Fx = (2nKx1 + 4Kx2)Δx + 2nKay1θy + 4Kaz2θ2 (24)  

Fy =
(
2nKy1 + 4Ky2

)
Δy (25)  

Fz = (2nKz1 + 4Kz2)Δz (26)  

My =

(

4Kz1

∑i

j=1
R2

1j + 4Kz2R2
2

)

θy + 2nKay1Δx + K1θy + 4Kay2θy (27)  

Mz =

(

4Ky1

∑i

j=1
R2

1j + 4Ky2R2
2

)

θz + 2nKaz2Δx + K2θz + 2nKaz1θz (28)  

where 

Kx1 =

EI1

(

k
′ 0
11l2

1 +
1
2
(
k
′ 1
11

)2
k
′ 0
14Δ2

x

)

l5
1

,

Kx2 =

EI2

(

k
′ 0
21l2

2 +
1
2
(
k
′ 1
21

)2
k
′ 0
24Δ2

x

)

l5
2

,

Kay1 =

EI1

(
3
2
k
′ 1
11k

′ 1
12k

′ 0
14Δ2

x + k
′ 0
12l2

1

)

l4
1

,

Kaz2 =

EI2

(
3
2
k
′ 1
21k

′ 1
22k

′ 0
24Δ2

x + k
′ 0
22l2

2

)

l4
2

,

K1 =

EI1

(
1
2

(
k
′ 1
11k

′ 1
13 + 2

(
k
′ 1
12

)2)
k
′ 0
14Δ2

x + k
′ 0
13l2

1

)

l3
1

,

K2 =

EI2

(
1
2

(
k
′ 1
21k

′ 1
23 + 2

(
k
′ 1
22

)2)
k
′ 0
24Δ2

x + k
′ 0
23l2

2

)

l3
2

.

Eqs. (24)–(28) can be expressed as the following matrix: 
⎡

⎢
⎢
⎢
⎣

Fx
Fy
Fz
My
Mz

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

Kx 0 0 2nKay1 4Kaz2
0 Ky 0 0 0
0 0 Kz 0 0

2nKay1 0 0 Kαy 0
4Kaz2 0 0 0 Kαz

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Δx
Δy
Δz
θy
θz

⎤

⎥
⎥
⎥
⎦

(29)  

where Kx = 2nKx1 + 4Kx2, Ky = 2nKy1 + 4Ky2, Kz = 2nKz1 + 4Kz2, Kαy = 4Kz1
∑i

j=1R2
1j + 4Kz2R2

2 + K1 + 4Kay2, Kαz = 4Ky1
∑i

j=1R2
1j +

4Ky2R2
2 + K2 + 2nKaz1. 

As the stiffness matrix in Eq. (29) shows, the displacement along the DOF is coupled with the rotation along the DOC. Enhancing the 
stiffness along the DOCs is an effective method to reduce the couple displacement. When the stiffness along the DOCs is far large than 
the driving stiffness, the load-deflection matrix of the guiding mechanism is given as: 
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⎡

⎢
⎢
⎢
⎣

Fx
Fy
Fz
My
Mz

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

Kx 0 0 0 0
0 Ky 0 0 0
0 0 Kz 0 0
0 0 0 Kαy 0
0 0 0 0 Kαz

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Δx
Δy
Δz
θy
θz

⎤

⎥
⎥
⎥
⎦

(30) 

Although the matrix is linearized as Eq. (30), the driving stiffness Kx is related to the displacement Δx, so it captures the nonlinearity 
of the guiding mechanism in a large travel range. 

3.4. Stress of the guiding mechanism 

The stress in the driving direction is crucial for the design of the guiding mechanism. The axial deflections of a fixed-guided CFLS 
and HLS are uz1 = 0 and uy2 = 0. 

Substituting uz1 = 0 and θ1 = 0 into Eqs. (2) and (3), the driving force and moment at the guided end are yielded: 

f1 =

(
1 + 2g11(a1)η1

H1
+

8.64b2
1

(1 + 2g14(a1)η1)
3u2

x1

)

ux1 (31)  

m1 =

(

−
1 + 2g11(a1)η1

2H1
−

0.72b2
1

(1 + 2g14(a1)η1)
2u2

x1

)

ux1 (32)  

Then the moment at the root of the fillet can be obtained: 

M1 =
ux1E1I1

(1 + 2g14(a1)η1)
3l1

(

−
1 + 2g11(a1)η1

2H1
(1 + 2g14(a1)η2)

3
− 7.92(1+ 2g14(a1)η2)b

2
1u2

x1 

+

(
2g11(a1)η1 + 1

H1
(1 + 2g14(a1)η2)

3
+ 8.64b2

1u2
x1

)

(1 − a1 / b1)

)

(33)  

Considering the influence of the stress concentration factor (kb = (a+0.253)/(a+0.097) for bending and kt = (a+0.371) /(a+0.097)
for tension, as provided in Ref. [31]), the maximum bending stress and maximum tensile stress can be expressed as: 

σb1 =
ux1E1kb1

2(1 + 2g14(a1)η1)
3b1

(

−
1 + 2g11(a1)η1

2H1
(1 + 2g14(a1)η2)

3
− 7.92(1+ 2g14(a1)η2)b

2
1u2

x1 

+

(
2g11(a1)η1 + 1

H1
(1 + 2g14(a1)η2)

3
+ 8.64b2

1u2
x1

)(

1 −
a1

b1

))

(34)  

σt1 =
0.6u2

x1E1kt1

(1 + 2g14(a1)η2)
2 (35)  

The total maximum stress of CFLS can be obtained by the following equation: 

σmax1 = σt1 + σb1 (36) 

The stress of HLSs can be obtained in the same way as CFLSs, which can be calculated using the following equations: 

σb2 =
ux2E2kb2

2λ3
2b2

⎛

⎜
⎜
⎜
⎝

−
1 + 2g11(a2)η2 + (g12(a2) + g22(a2))

2H2
λ3

2 − 7.92λ2b2
2u2

x2+

(
1 + (g11(a2) + g21(a2))η2

H2
λ3

2 + 8.64b2
2u2

x2

)(

1 −
a2

b2

)

⎞

⎟
⎟
⎟
⎠

(37)  

σt2 =
0.6u2

x2E2kt2

(1 + (g14(a2) + g24(a2))η2)
2 (38)  

σmax2 = σt2 + σb2 (39)  

where λ2 = 1+ (g14(a2) + g24(a2))η2. 

3.5. Frequency of the guiding mechanism 

The equivalent mass of the guiding mechanism can be calculated as: 

Me = M0 +
(

2ncl1t1 + 4n
(

1 −
π
4

)
r2

1

)
ρ1w1 +

(
2mcl2t2 + 2m

(
1 −

π
4

)
r2

2

)
ρ2w2 (40) 
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where M0 is the mass of the central stage, c is the equivalent mass factor of leaf spring which is determined as 13/35 according to 
Ref. [36]. ρ1 and ρ2 are the mass destiny of material of CFLSs and HLSs, respectively. 

Then the total mass of the guiding mechanism can be expressed as: 

Mt = M0 +
(

2nl1t1 + 8n
(

1 −
π
4

)
r2

1

)
ρ1w1 +

(
2ml2t2 + 6m

(
1 −

π
4

)
r2

2

)
ρ2w2 (41)  

The resonant frequency of the guiding mechanism is derived as: 

fr =
1

2π

̅̅̅̅̅̅
Kx

Me

√

(42)  

4. Optimization design 

4.1. Optimization model 

The stiffness along the DOC should be large enough to avoid displacement coupling. Maximum stress has a crucial influence on the 
fatigue life of mechanisms in some high-speed and high-acceleration applications. Therefore, the design objective is to minimize the 
total mass and maximum stress of the guiding mechanism by determining the optimal parameters of CFLSs and HLSs which satisfy the 

Fig. 6. Optimization processing.  

Table 1 
. Parameters of the guiding mechanism.  

n  r1(mm)  t1(mm)  w1(mm)  r2(mm)  l2(mm)  

2 1.36 0.76 42.81 0.60 13.90 
3 1.23 0.67 44.39 0.56 14.69 
4 1.13 0.61 45.55 0.55 15.27 
5 1.07 0.57 46.46 0.55 15.73 
6 1.01 0.53 47.20 0.54 16.10 
7 0.97 0.51 47.83 0.54 16.41 
8 0.94 0.48 48.37 0.54 16.68  

Table 2 
Main physical properties of the guiding mechanism.  

n  σmax  fr  Kx  Ky  Kz  Kay  Kaz  Mt  

(MPa) (Hz) 
(

N
μm

) (
N

μm

) (
N

μm

) (
N ⋅ m
μrad

) (
N ⋅ m
μrad

)
(g) 

2 277 201 1.00 463 590 2.86 2.47 633.5 
3 248 197 1.00 498 760 2.66 2.32 660.0 
4 229 195 1.00 534 917 2.74 2.29 679.6 
5 216 193 1.00 570 1065 2.89 2.29 695.4 
6 206 191 1.00 607 1205 3.07 2.31 708.5 
7 198 190 1.00 642 1339 3.25 2.34 719.8 
8 192 188 1.00 677 1467 3.44 2.37 729.8  
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frequency and stiffness constraints. The optimization objective can be expressed as: 

Find (n, r1, t1,w1, r2, l2)

to minimize : Fc = Mt + c1max(σmax1, σmax2)/σmax0
subject to : fr > fr0

Kx = Kx0
Ky > Ky0
Kz > Kz0
Kαy > Kαy0
Kαz > Kαz0

(43)  

where c1 is the weight coefficients. 
The design model presented in Eq. (43) contains the topology structure (the group numbers of CFLSs and their location) and size 

parameters (parameters of CFLS and HLS). The nonlinear constraints are handled with the self-adaptive penalty function [37]. Then 
optimal parameters are obtained using the differential evolution algorithm [38–40]. 

As shown in Fig. 6, the analytical model for the mechanism is built at the first stage and then the constraints are handled with a self- 
adaptive penalty function and the differential evolution algorithm is utilized to obtain the optimal parameters of the flexure hinge 
which is consists of mutation operation, interlace operation, and selecting operation. The determining of optimal group number and 
the corresponding optimal parameters can be outlined as follows: 

Step 1: Let n0 = n = 2. 
Step 2: Obtained the optimal parameters by utilizing the optimization processing shown in Fig. 6. 
Step 3: If Ky < Ky0, n = n + 1 and return to step 2. 
Step 4: If Ky > Ky0, output n and the parameters of CFLS and HLS, and calculate the properties of the mechanism. 

4.2. Design case 

Aluminum alloy is selected as the material, whose Young’s modulus is E = 71.7 GPa, Poisson’s ratio is μ = 0.33, and mass density is 
ρ = 2700 Kg/m3. The length and width of the design area are 150 and 100 mm. The length of CFLSs is l1 = 20 mm. The thickness of 
HLSs is t2 = 0.25 mm. The static stiffness in the driving direction is Kx = 1 N/μm. The payload stiffness in the Z-axis direction Kz and it 

Fig. 7. The ratio of stiffness along the DOC to it along the DOF.  

Table 3 
Verification of the optimal design.   

Design values FEA results Error % 

fr  195 Hz 202 Hz 3.4 
Kx  1.00 N/μm  1.07 N/μm  7.3 
Ky  534 N/μm  476 N/μm  12 
Kz  917 N/μm  877 N/μm  4.5 
Kay  2.74 N ⋅ m/μrad  2.73 N ⋅ m/μrad  0.3 
Kaz  2.29 N ⋅ m/μrad  2.09 N ⋅ m/μrad  9.3 
σmax  229 MPa 233 MPa 1.7  
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in the and Y-axis direction Ky are large than 500 N/μm. The torsional stiffness around Z-axis Kaz and it around Y-axis Kzy are large than 
1 N ⋅ m/μrad. The resonant frequency fr is large than 150 Hz. The maximum stress is less than σmax0 = 250 MPa when the travel range 
of the guiding mechanism reaches 500 μm. 

The optimal parameters n, r1, t1, w1, r2 and l2 are listed in Table 1. The corresponding physical properties presented in Table 2 show 
that the maximum stress is 229 MPa when the group number n is large than 4 which satisfies the desired value of 250 MPa and the 
stiffness Ky = 534 N/μm matches the desired value of 500 N/μm. The stiffness along the DOC increases and the maximum stress 
decreases with the increase of group number which is beneficial for the applications; however, and mass of the guiding mechanism 
increases with the group number, and the frequency decreases. Therefore, the optimal parameters are determined as n= 4, r1 = 1.13 
mm, t1 = 0.61 mm, w1 = 45.55 mm, r2 = 0.55 mm, l2 = 15.27 mm. 

The ratios of stiffness along the DOC and DOF are plotted in Fig. 7, which shows that the stiffness along the DOC is far large than it 

Fig. 8. Deflections in the DOC directions.  

Fig. 9. Load-displacement relationship of the guiding mechanism.  
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along the DOF (large than 400 times) and the group number of CFLSs provides a major improvement in the stiffness along the Z-axis 
direction and minor stiffness improvement along other DOC directions. 

5. Verification with FEA 

An FEA model is built in COMSOL Multiphysics 5.3 by utilizing the optimal parameters determined in Section 4.2 and FEA results 
are obtained and listed in Table 3. 

The deflections along the DOC of a guiding mechanism subjected to a unit force or moment are depicted in Fig. 8. The maximum 
deflection of the mechanism along the Y-axis and Z-axis are 0.00213 μm and 0.00114 μm when the mechanism is subjected to a unit 
load along Y-axis and Z-axis, respectively. The maximum deflection of mechanism around the Y-axis and Z-axis are 0.0297 μm and 
0.0373 μm when the mechanism is subjected to a unit moment around the Y-axis and Z-axis, respectively. 

The nonlinear displacement in the X-axis direction is plotted in Fig. 9. The comparison illustrates that the proposed model is in good 

Fig. 10. Schematic diagram of the traditional guiding mechanism.  

Table 4 
Parameters of the mentioned guiding mechanism.  

n  r(mm)  t(mm)  w(mm)  σmax(MPa)  fre(Hz)  Kx(N/μm) Mt(g)  

2 1.41 0.80 42.75 287 201 1.00 631.4 
3 1.26 0.69 44.37 255 197 1.00 657.9 
4 1.16 0.63 45.54 234 195 1.00 677.5 
5 1.09 0.58 46.45 220 193 1.00 693.1 
6 1.03 0.55 47.2 210 191 1.00 706.3 
7 0.99 0.52 47.82 201 190 1.00 717.5 
8 0.95 0.49 48.37 195 188 1.00 727.5  

Fig. 11. The ratio of stiffness along the DOC for two types of designs.  
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agreement with the FEA results. As Fig. 9 shown, the stiffness along the DOF is increased by 48% for the maximum stroke, which leads 
to a decrease in the ratio of stiffness along the DOC to it along the DOF. 

6. Comparison with guiding mechanism without HLSs 

Ref. [33] employed CFLSs for a guiding mechanism to improve the maximum stress of beam-based design, showing that the 
maximum stress of leaf spring is reduced by 33% for the same travel range. The mentioned mechanism, whose schematic diagram is 
shown in Fig. 10, is optimized to minimize the total mass and maximum stress by determining the optimal parameters r and t with the 
same constraints as shown in Eq. (43). The optimal results for different group number n are listed in Table 4, which indicate that the 
frequency, total mass, and maximum stress of the two types of designs are close. 

The corresponding stiffness ratios of two types of designs in the DOC directions are plotted in Fig. 11 which illustrates that the new 
design provides a considerable improvement in the stiffness Ky and Kaz and a slight improvement in the stiffness Ky and Kay. 

7. Experimental results 

The guiding mechanism is manufactured for experimental investigations, in which the HLSs are displaced by the thin leaf springs 
produced by spring steel 65 Mn (the thickness is 0.2 mm) for its high fatigue strength, as shown in Fig. 12. When the leaf springs are 
disassembled, the proposed design becomes the mentioned guide mechanism shown in Fig. 10. The efficiency of the proposed design is 
illustrated by measuring the stiffness ratio of the guiding mechanism in two different states (leaf springs are assembled or not). 

Tests are carried out to illustrate the efficiency of the proposed structure in the improvement of torsional stiffness around the Z-axis. 
The mechanism for the macro-micro compounded system is fixed on the rigid guide and driven by Ironless Motor (AUM3-S3, from 
Akribis Systems Inc.). The displacement of the guiding mechanism in the X-axis direction is measured using Incremental Encoder 
System (RGH22, from Renishaw Inc.) with Linear Scale (RGS20, from Renishaw Inc.), and the displacement in the Y-axis direction 
caused by the torsional moment is obtained by using Laser System (XL-80 from Renishaw Inc.). 

Fig. 12. Guiding mechanism installing leaf springs.  

Fig. 13. Test results for two types of designs (a) displacement ratios for the traditional mechanism, (b) displacement ratios for the pro
posed mechanism. 
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The torsional stiffness of the traditional mechanism and the proposed mechanism are measured as 3.68 N ⋅ m/μrad and 23.83 N ⋅ m 
/μrad, respectively. The displacement ratios for two types of mechanisms are plotted in Fig. 13(a) and (b). The average ratio of the 
displacement of the traditional guiding mechanism along the DOF to that along the DOC is 192 for different driving forces, while the 
proposed mechanism increases this value to 679. The increase rate reaches 254%. 

8. Conclusions 

A new guiding mechanism employing orthogonally oriented CFLSs and HLSs is proposed in this paper to provide a high stiffness 
ratio along the DOC to it along the DOF and reduce the stress concentration. The nonlinear deflection and maximum stress of the 
guiding mechanism are investigated for large-stroke applications. The kinetostatic model is obtained by utilizing the energy method 
for the simultaneous optimal design of topology and size. An optimization design is carried out to minimize the total mass and 
maximum stress of guiding mechanism subjecting to the stiffness and frequency constraints. The optimization results are verified by 
FEA results. Comparison with normal design indicates that the proposed guiding mechanism enhances the stiffness along the DOC 
effectively, which has been verified by experimental results. 
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Appendix A 

The expressions of g1i and g2i (i = 1,2,3,4) are listed as: 

g11(a) =
6a(2a + 1)
(4a + 1)2.5 arctan

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√ )
+

6a2 + 4a + 1
(2a + 1)(4a + 1)2 − 1 (A.1)  

g12(a) =
− 12a(2a + 1)
(4a + 1)2.5 arctan

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√ )
+

2a − 1
(4a + 1)2 + 1 (A.2)  

g13(a) =
(6a2 − 4a − 1)(2a + 1)3

4a3(4a + 1)2.5 arctan
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4a + 1
√ )

−
20a3 − 6a2 − 6a − 1

4a2(4a + 1)2 +
π

16a3 −
1
3

(A.3)  

g14(a) =
2a + 1

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√ arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√
−

π
4a

− 1 (A.4)  

g21(a) =
3a(a + 1)
(2a + 1)2.5 arctan

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√ )
+

3a2 + 4a + 2
2(2a + 1)(4a + 1)2 − 1 (A.5)  

g22(a) =
6a(a + 1)
(2a + 1)2.5 arctan

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√ )
−

a − 1
(4a + 1)2 − 1 (A.6)  

g23(a) =
(3a2 − 4a − 2)(a + 1)3

a3(2a + 1)2.5 arctan
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2a + 1
√ )

−
5a3 − 3a2 − 6a − 2

2a2(4a + 1)2 +
π

2a3 −
1
3

(A.7)  

g24(a) =
2(a + 1)

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√ arctan
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√
−

π
2a

− 1 (A.8) 

The expressions of A1 and A2 are listed as: 

A1(a, b) =
2(2a + 1)

(
(b − 2a)2

− 4a − 1
)
arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4a + 1

√ +
(b − 2a)3

3
+ 2a(6a+ 1 − 2b) + 2(2a+ 1)(b − 2a)ln(2a+ 1)

+ π
(

− a2 + 2ab −
b2

2
+ 2a+

1
2

) (A.9) 
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A2(a, b) = 4(a+ 1)
(
(b − 2a)2

− 4(2a+ 1)
) arctan

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2a + 1

√ + 8(a+ 1)(b − 2a)ln(a+ 1) +
(
− 2a2 + 4ab − b2 + 8a+ 4

)
π +

(b − 2a)3

3
+ 24a2 − 8ab + 8a

(A.10)  
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