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A B S T R A C T

In recent decades, metaheuristics have proven their effectiveness in solving large-scale real-world problems
with multiple objectives. However, we still need to design robust algorithms capable of converging and
approximating efficiently the true Pareto set. In this paper, we extend the recently Manta Ray foraging
optimization (MOMRFO) to the multiobjective case. MOMRFO uses a population archive to store the non-
dominated solutions generated so far by the exploration process. The leader’s solutions are selected from the
population archive to guide the Manta Rays population towards promising search regions. We use crowding
distance and 𝜖-dominance to provide a good compromise between diversity and convergence of the obtained
potential Pareto set.

The proposed algorithm is validated on five bi-objective test functions, seven three objective test functions,
and is applied to structural design problems such as four-bar truss design, speed reduced design, welded beam
design, and disk brake design. The algorithm is compared with four well-known multi-objective meta-heuristics.
The experimental results show that the MOMRFO algorithm outperforms against the selected multiobjective
meta-heuristics by providing better convergence behaviour with a better diversity of solutions.
1. Introduction

When addressing a complex engineering problem, like structural
design, the modeller is often facing multiple objectives and non-linear
constraints. These objectives are often contradictory but need to be
optimized simultaneously. In these situations, there is no single optimal
solution but a set of non dominated solutions called Pareto set or Pareto
Front. The Pareto set contains solutions with the best possible trade-
offs between the objectives in a way that no objective can be improved
without deteriorating the other objectives.

To solve multi-objective optimization problems (MOP), there are
three main approaches according to the preferences of the decision-
maker (DM), namely, a priory, a posteriory, and interactive approaches.
In a priory approach, the DMs set their preferences before the start of
the optimization process. These preferences are modelled by a utility
function that aggregates all objectives in one. The MOP can be then
solved as a single-objective optimization problem. We can cite in this
the weighted sum method for example. The drawbacks of the priory
approach for solving multi-objective optimization problems are the
difficulty of explicating the preferences of the DM.

In the interactive approach, the DM chooses a compromise solution
among locally/partially generated Pareto set. This category includes
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all interactive methods, such as STEM or Steuer and Choo methods.
These approaches can be based on initial estimates and derivative
calculations. They suffer from stagnation in local optima, and they are
not suitable for solving a wide variety of MOP.

In a posteriory approach, all the Pareto set (PS) is tentatively gen-
erated. It can be proven that any rational DM with an increasing utility
function would select a solution from the PS. However, The generation
of the whole PS is highly demanding in terms of computational time.
For the 3 last decades, meta-heuristics has been used to overcome the
complexity of MOP as they are capable of providing a good approxi-
mation of the PS within a reasonable amount of time. Metaheuristics
often mimic successful characteristics of nature, particularly biological
systems and can provide acceptable solutions to complex optimization
problems.

In the literature of multi-objective meta-heuristics, there are mainly
three categories of methods: (1) Pareto dominance-based meta-
heuristics, (2) indicator-based meta-heuristics and (3) Decomposition-
based meta-heuristics. In the first category, the focus is on relaxing or
modifying the Pareto dominance relation to guarantee a high conver-
gence towards the Pareto set. For instance, the NSGAII ’Non-dominated
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List of Abbreviations

MOP Multi-objective Optimization Problems
DM Decision-Maker
MRFO Manta Ray foraging optimization
MOMRFO Multi-objective Manta Ray foraging opti-

mization
PS Pareto set
MOEAs Multi-Objective Evolutionary Algorithms
P(t) Current population
t Current iteration
Ub Uper bound
Lb Lower bound
S Somersault factor
T Maximal number iteration
Xbest Best solution
Tmax Maximum archive size
MOEA/D Multi-objective evolutionary algorithm

based on decomposition
MOGWO Multi-Objective Grey Wolf Optimizer
MOPSO Multi-objective Particle Swarm Optimiza-

tion
MSSA Multi-objective Salp Swarm Algorithm
ZDTn Bi-objective test functions with n=1 to 6
DTLZn Three-objective test functions with n=1 to

7
IGD Inverted Generational Distance
HV Hyper-Volume

orting genetic algorithm’ uses the Pareto dominance relation to select
he elite solutions and uses the crowding distance to preserve the
iversity of selected solutions (Deb, Pratap, Agarwal and Meyarivan,
002). Several extensions have been proposed in the area of multi-
bjective meta-heuristics based on Pareto dominance relation [see for
xample Guo, Cheng, Luo, Gong, & Xue, 2017; Guo, Yang, Chen,
heng and Gong, 2019; Guo, Zhang, Cheng, Wang, & Gong, 2018; Guo,
hang, Gong, Zhang and Yang, 2019]. Other meta-heuristics modify
he dominance relation to improve the convergence and the diversity
f solutions. The first proposed modification to the dominance relation
s the epsilon-dominance relation which extends the dominance region
f a candidate solution 𝑥 by modifying the objective values by 𝑓𝑖(𝑥) −
(Laumanns, Thiele, Deb, & Zitzler, 2002). This dominance relation is
sed in several multi-objective meta-heuristic such as the evolutionary
lgorithm based Epsilon-dominance to update and avoid the explosion
f the archive, improve the diversity of the solutions (Cheng, Jin, & Hu,
009; Deb, Mohan, & Mishra, 2005; Got, Moussaoui, & Zouache, 2020;
ouache, Abdelaziz, Lefkir and Chalabi, 2019; Zouache, Arby, Nouioua
nd Abdelaziz, 2019; Zouache, Moussaoui, & Abdelaziz, 2018). In
he same way, we can cite alpha-dominance (Liu et al., 2017), cone-
ominance (Batista, Campelo, Guimarães, & Ramírez, 2011), (1 −
)-dominance (Farina & Amato, 2004), grid dominance (Yang, Li,
iu, & Zheng, 2013), fuzzy dominance (He, Yen, & Zhang, 2013),
he controlling dominance area of solutions (CDAS) (Sato, Aguirre, &
anaka, 2007), and Theta-dominance (Yuan, Xu, Wang, & Yao, 2015)
ethods. However, most of the proposed dominance relations aim to

mprove the convergence of MOEAs algorithms and may not achieve a
ood balance between convergence and diversity when solving MOPs.

The second category is the indicator-based meta-heuristics. It uses
he performance metrics of diversity and convergence, such as IGD
ndicator, hypervolume indicator (HV) and S-metric, in the optimiza-
ion process, to provide a good compromise between diversity and
onvergence. HV metric, for example, is widely used as a guide in the
2

Fig. 1. The crowding distance calculation.

Table 1
Properties of multi-objective test functions.

Bi-objective test function

Test function Properties

ZDT1 Convex front
ZDT2 Non-convex front
ZDT3 Discontinuous front
ZDT4 This test function has 221 local Pareto-optimal fronts and

therefore is highly multi-modal.
ZDT6 This test function has a non-uniform search space

Three-objective test functions

Test function Characteristics

DTLZ1 Linear Pareto-optimal front
DTLZ2 Spherical Pareto-optimal front
DTLZ3 Many Pareto-optimal fronts
DTLZ4 Pareto-optimal front has dense set of solutions to exist near the

𝑓𝑀 − 𝑓1
DTLZ5 This problem is used to assess the ability of MOEA to converge

to a degenerated curve.
DTLZ6 This problem has 2𝑀−1 disconnected Pareto-optimal front.
DTLZ7 This problem has Pareto-optimal front which is a combination of

a straight line and a hyper-plane.

optimization process to converge towards the Pareto front. This metric
is used in (SMS-EMOA) (Beume, Naujoks, & Emmerich, 2007; Brockhoff
& Zitzler, 2007), HypE (Bader & Zitzler, 2011) and a new hypervolume-
based Evolutionary Algorithm for many-objective optimization (Shang
& Ishibuchi, 2020). Recently, some meta-heuristics have used other
metrics, that seem to be effective in guiding towards the Pareto front,
such as the meta-heuristics based IGD metric (Sun, Yen, & Yi, 2018),
MOEAs based distance indicators (Wagner & Neumann, 2013) and
MOEAs based R-metric (Brockhoff, Wagner, & Trautmann, 2015). The
advantage of these methods is again the good balance between diversity
and convergence.

The third category is the meta-heuristics based on decomposition
where the main problem is decomposed into several scalar optimiza-
tion sub-problems and simultaneously optimized using a set of weight
vectors and scalarizing functions. The scalarizing functions commonly
used are the Tchebychef method, the weighted sum, the boundary
intersection, and vector angle distance scaling. MOEA/D is one of the
most popular MOEAs algorithms based on decomposition. It explores
the search space by a set of scalar subproblems (Zhang & Li, 2007).
MOEAs was followed by several algorithms, MOEA/DD (Li, Deb, Zhang,
& Kwong, 2014), NSGA-III (Deb & Jain, 2013), MOEA/D-DE (Li &
Zhang, 2008), MOEA/D-M2M (Liu, Gu, & Zhang, 2013), etc. The meta-
heuristics based on decomposition are the most effective for solving
MOPs. However, all these methods are sensitive to the choice of the
scalarizing function.
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Fig. 2. Flowchart of the proposed MOMRFO algorithm.
Fig. 3. Flowchart of the archive update strategy.
This study presents a new multi-objective version of the recently

warm intelligence algorithm called Manta-Ray foraging optimization

MRFO) aiming at providing a good compromise between diversity
3

nd convergence when generating the Pareto set. MRFO is a recent
population-based metaheuristic that simulates the behaviour of Manta-

Rays for solving single-objective problems. Despite its novelty, MRFO

algorithm has attracted the attention of several researchers and it
was applied with high success to various single-objective problems.
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Fig. 4. Variation of IGD metric and HV metric and the IGD metric for DTLZ2 with three different archive sizes.
Fig. 5. Variation of IGD metric and HV metric and the IGD metric for DTLZ2 with three different epsilon values.
able 2
tatistical results of IGD metric on ZDT test functions.
Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 9,27E−05 5,89E−04 5,41E−04 2,87E−04 3,15E−03
Worst 1,25E−04 6,10E−03 3,14E−03 1,21E−03 7,20E−03

ZDT1 Average 1,01E−04 1,50E−03 1,15E−03 4,22E−04 4,73E−03
STD 7,09E−06 9,63E−04 7,65E−04 1,99E−04 1,06E−03
Wilcoxon test + + ++ – + − + ++ − + −+ – −

Best 9,24E−05 7,93E−04 3,99E−04 3,20E−04 3,65E−03
Worst 1,28E−04 2,31E−02 6,24E−02 2,31E−02 1,16E−02

ZDT2 Average 1,03E−04 6,45E−03 2,20E−02 1,94E−02 5,30E−03
STD 7,38E−06 9,16E−03 1,54E−02 8,50E−03 1,43E−03
Wilcoxon test + + ++ − + ++ – − – − – ++

Best 7,94E−03 3,06E−04 6,03E−03 1,81E−03 4,50E−03
Worst 8,28E−03 3,26E−03 2,39E−02 1,41E−02 1,16E−02

ZDT3 Average 8,13E−03 9,66E−04 1,04E−02 7,49E−03 7,18E−03
STD 1,29E−04 5,93E−04 3,07E−03 3,14E−03 1,78E−03
Wilcoxon test – + − + + ++ + − +− –− + – +

Best 9,66E−05 2,89E−02 2,03E−01 2,14E−02 6,93E−02
Worst 1,12E−04 7,19E−01 2,56E+00 6,51E−01 5,01E−01

ZDT4 Average 1,02E−04 2,88E−01 1,16E+00 1,78E−01 1,94E−01
STD 3,95E−06 2,09E−01 6,88E−01 1,33E−01 9,52E−02
Wilcoxon test + + ++ – +− − + +− –− – +

Best 6,73E−05 2,88E−04 3,52E−04 2,48E−04 6,68E−04
Worst 1,45E−04 2,99E−03 1,69E−01 7,09E−04 4,21E−03

ZDT6 Average 8,09E−05 1,45E−03 3,35E−02 3,54E−04 2,05E−03
STD 1,45E−05 8,96E−04 4,86E−02 1,11E−04 1,00E−03
Wilcoxon test + + ++ – ++ − + ++ – − – −

Best results are marked in bold.
However, it has not been applied yet in multi-objective optimiza-

tion problems. Furthermore, the intelligent foraging strategies used by

MRFO algorithm can improve its ability to explore the search space
4

and increase the chance to get well-distributed solutions, which is one

of the challenges in multi-objective optimization. Hence, the major’s

contributions of this study are as follows:
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Table 3
Statistical results of HV metric on ZDT test functions.

Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 7,21E−01 7,09E−01 7,11E−01 7,14E−01 5,96E−01
Worst 7,22E−01 6,48E−01 5,90E−01 7,05E−01 4,83E−01

ZDT1 Average 7,21E−01 6,93E−01 6,85E−01 7,11E−01 5,48E−01
STD 1,00E−04 1,09E−02 3,73E−02 2,37E−03 2,58E−02
Wilcoxon test + + ++ – + − + −+ − + ++ – −

Best 7,18E−01 4,23E−01 4,38E−01 4,37E−01 3,13E−01
Worst 4,46E−01 9,09E−02 0,00E+00 9,09E−02 1,91E−01

ZDT2 Average 4,55E−01 3,39E−01 7,52E−02 1,46E−01 2,61E−01
STD 4,88E−02 1,37E−01 1,04E−01 1,28E−01 2,59E−02
Wilcoxon test + + ++ − + ++ – − – +− – ++

Best 8,04E−01 6,00E−01 5,80E−01 7,80E−01 6,46E−01
Worst 6,96E−01 5,48E−01 1,30E−01 6,13E−01 4,70E−01

ZDT3 Average 8,00E−01 5,81E−01 4,22E−01 7,43E−01 5,55E−01
STD 1,93E−02 1,07E−02 8,87E−02 4,95E−02 4,57E−02
Wilcoxon test + + ++ − + −+ – − − + ++ – +−

Best 7,21E−01 9,09E−02 0,00E+00 8,20E−02 0,00E+00
Worst 7,02E−01 0,00E+00 0,00E+00 0,00E+00 0,00E+00

ZDT4 Average 7,20E−01 5,86E−03 0,00E+00 3,01E−03 0,00E+00
STD 3,41E−03 2,27E−02 0,00E+00 1,48E−02 0,00E+00
Wilcoxon test + + ++ – − – − – − – −

Best 3,90E−01 3,85E−01 3,83E−01 3,86E−01 3,76E−01
Worst 1,93E−02 3,26E−01 0,00E+00 3,78E−01 2,52E−01

ZDT6 Average 3,78E−01 3,59E−01 2,08E−01 3,84E−01 3,38E−01
STD 6,66E−02 1,95E−02 1,76E−01 1,88E−03 3,19E−02
Wilcoxon test + + ++ − + −+ – − − + ++ – −

Best results are marked in bold.
Table 4
Statistical results of IGD metric on DTLZ test functions.

Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 2,59E−03 3,49E−02 3,71E−02 2,07E−02 6,01E−03
Worst 1,03E−01 2,01E−01 2,68E−01 1,21E−01 2,70E−01

DTLZ1 Average 3,74E−02 1,25E−01 1,58E−01 6,77E−02 6,39E−02
STD 2,48E−02 3,96E−02 5,84E−02 2,49E−02 8,12E−02
Wilcoxon test + + +− – +− − + +− – − − + ++

Best 9,06E−04 6,69E−03 1,32E−03 2,87E−03 5,28E−03
Worst 1,02E−03 1,03E−02 1,82E−03 5,02E−03 8,21E−03

DTLZ2 Average 9,62E−04 7,88E−03 1,58E−03 4,06E−03 7,32E−03
STD 2,92E−05 8,98E−04 1,31E−04 5,46E−04 6,18E−04
Wilcoxon test + + ++ – − − + −+ − + ++ −+ –

Best 9,58E−02 1,70E+00 4,08E−01 4,61E−01 1,01E−01
Worst 8,36E−01 2,97E+00 1,71E+00 2,35E+00 2,37E+00

DTLZ3 Average 4,15E−01 2,78E+00 1,16E+00 1,47E+00 1,56E+00
STD 2,18E−01 2,22E−01 3,62E−01 5,01E−01 8,08E−01
Wilcoxon test + + ++ – − −+ – − + ++ −+ –

Best 1,20E−03 1,76E−03 1,36E−03 1,34E−03 4,57E−03
Worst 2,68E−03 2,80E−03 1,43E−02 1,39E−02 1,02E−02

DTLZ4 Average 1,87E−03 2,20E−03 5,52E−03 7,19E−03 6,80E−03
STD 4,05E−04 2,62E−04 4,34E−03 4,06E−03 1,27E−03
Wilcoxon test + + ++ − + −+ – + – − – −

Best 8,62E−05 8,71E−04 2,01E−04 1,67E−04 6,53E−04
Worst 1,78E−04 2,40E−03 7,83E−04 4,81E−04 3,72E−03

DTLZ5 Average 1,14E−04 1,50E−03 4,41E−04 2,58E−04 1,55E−03
STD 2,24E−05 4,23E−04 1,59E−04 9,25E−05 6,05E−04
Wilcoxon test + + ++ – − − + ++ − + −+ – −

Best 4,35E−05 7,58E−04 2,49E−04 5,19E−02 6,17E−04
Worst 7,80E−05 7,31E−03 1,09E−03 9,70E−02 5,75E−03

DTLZ6 Average 5,11E−05 2,19E−03 5,43E−04 6,94E−02 1,84E−03
STD 6,39E−06 1,44E−03 1,83E−04 1,38E−02 1,26E−03
Wilcoxon test + + ++ −+ – – − − + ++ – +−

Best 6,27E−04 2,71E−03 2,69E−03 1,09E−02 6,72E−03
Worst 8,08E−04 9,95E−03 6,52E−02 1,17E−02 2,52E−02

DTLZ7 Average 7,28E−04 5,58E−03 2,42E−02 1,13E−02 1,12E−02
STD 5,07E−05 2,07E−03 1,52E−02 2,07E−04 3,76E−03
Wilcoxon test + + ++ − + ++ – +− – − – +

Best results are marked in bold.
5
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Table 5
Statistical results of HV metric on DTLZ test functions.

Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 4,22E−01 0,00E+00 0,00E+00 0,00E+00 1,36E−02
Worst 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00

DTLZ1 Average 4,54E−02 0,00E+00 0,00E+00 0,00E+00 4,37E−04
STD 1,17E−01 0,00E+00 0,00E+00 0,00E+00 2,44E−03
Wilcoxon test + + ++ – − – − – − – −

Best 5,21E−01 1,75E−01 5,03E−01 3,41E−01 1,90E−01
Worst 5,05E−01 1,15E−01 4,48E−01 2,80E−01 1,07E−01

DTLZ2 Average 5,15E−01 1,30E−01 4,79E−01 3,08E−01 1,35E−01
STD 4,37E−03 1,33E−02 1,31E−02 1,56E−02 2,16E−02
Wilcoxon test + + ++ – − − + ++ − + −+ – −

Best 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
Worst 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00

DTLZ3 Average 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
STD 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00
Wilcoxon test – − – − – − – − – −

Best 5,28E−01 4,50E−01 5,00E−01 5,12E−01 3,99E−01
Worst 4,67E−01 3,65E−01 3,72E−02 9,09E−02 1,01E−02

DTLZ4 Average 4,99E−01 4,18E−01 3,85E−01 3,48E−01 1,90E−01
STD 1,37E−02 1,95E−02 1,14E−01 1,55E−01 1,02E−01
Wilcoxon test + + ++ – + – + – −+ – −

Best 1,99E−01 1,74E−01 1,96E−01 1,97E−01 1,90E−01
Worst 1,97E−01 1,26E−01 1,73E−01 1,70E−01 1,05E−01

DTLZ5 Average 1,98E−01 1,50E−01 1,90E−01 1,90E−01 1,44E−01
STD 5,14E−04 1,38E−02 4,70E−03 6,72E−03 2,08E−02
Wilcoxon test + + ++ – − − + −+ − + −+ – −

Best 2,01E−01 1,81E−01 1,95E−01 0,00E+00 1,82E−01
Worst 2,01E−01 1,51E−02 1,82E−01 0,00E+00 9,91E−02

DTLZ6 Average 2,01E−01 1,20E−01 1,92E−01 0,00E+00 1,60E−01
STD 1,51E−04 3,82E−02 2,64E−03 0,00E+00 2,31E−02
Wilcoxon test + + ++ – +− − + ++ – − − + −+

Best 2,79E−01 2,08E−01 1,42E−01 1,98E−01 1,40E−01
Worst 2,73E−01 3,34E−02 0,00E+00 1,89E−01 0,00E+00

DTLZ7 Average 2,76E−01 9,56E−02 1,33E−02 1,94E−01 5,36E−02
STD 1,39E−03 6,25E−02 3,34E−02 2,68E−03 3,07E−02
Wilcoxon test + + ++ − + −+ – − − + ++ − − +−

Best results are marked in bold.
Table 6
Statistical results of IGD metric for engineering design problems.

Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 6,18E−03 1,67E−02 6,90E−01 1,18E−02 2,41E−02
Worst 6,72E−03 1,08E−01 9,51E−01 3,28E−02 3,03E−01

WBD Average 6,40E−03 4,47E−02 8,35E−01 2,04E−02 9,88E−02
STD 1,34E−04 2,17E−02 7,03E−02 5,13E−03 7,85E−02
Wilcoxon test + + ++ – ++ − + ++ – − – +

Best 1,03E+01 1,03E+01 1,16E+01 9,61E+00 1,16E+01
Worst 1,27E+01 1,34E+01 4,92E+10 2,35E+01 2,04E+01

SRD Average 1,11E+01 1,15E+01 2,83E+09 1,26E+01 1,62E+01
STD 5,57E−01 7,23E−01 1,10E+10 3,75E+00 2,79E+00
Wilcoxon test + − ++ – ++ – ++ – − – +

Best 1,31E−03 5,05E−03 2,25E−02 4,16E−03 1,10E−02
Worst 1,70E−03 1,22E−02 1,29E−01 2,26E−02 5,98E−02

Disk Average 1,44E−03 6,63E−03 6,76E−02 8,78E−03 2,34E−02
STD 9,06E−05 1,56E−03 2,89E−02 5,74E−03 1,04E−02
Wilcoxon test + + ++ – ++ ++ – – − – +

Best 7,84E−02 2,36E−01 8,87E+00 2,35E−01 6,39E−01
Worst 9,85E−02 5,63E−01 2,04E+01 1,27E+00 2,02E+00

Bar Average 8,66E−02 3,52E−01 1,67E+01 5,76E−01 1,02E+00
STD 5,27E−03 8,67E−02 2,52E+00 3,24E−01 3,31E−01
Wilcoxon test + + ++ − + ++ – ++ – − – +

Best results are marked in bold.
• A Guided Archive population Manta-Ray foraging optimization

based epsilon-dominance is proposed for large-scale multi-
6

objective optimization.
• An archive population is introduced into the basic version of
MRFO to store and update the so far generated non-dominated
solutions.

• The leader solutions and archive population is used to guide the

Manta Rays solutions toward the Pareto front.
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Table 7
Statistical results of HV metric for engineering design problems.

Test function Statistical results MOMRFO MOGWO MOEAD MOPSO MSSA

Best 8,44E−01 8,30E−01 5,26E−01 8,40E−01 8,30E−01
Worst 8,42E−01 8,14E−01 0,00E+00 8,22E−01 7,71E−01

WBD Average 8,43E−01 8,22E−01 5,59E−02 8,36E−01 8,17E−01
STD 3,09E−04 3,94E−03 1,41E−01 3,73E−03 1,21E−02
Wilcoxon test + + ++ − + −+ – − − + ++ – +−

Best 2,63E−01 2,63E−01 2,63E−01 2,65E−01 2,61E−01
Worst 2,61E−01 2,60E−01 0,00E+00 2,52E−01 2,56E−01

SRD Average 2,62E−01 2,62E−01 2,11E−01 2,63E−01 2,59E−01
STD 4,99E−04 5,88E−04 8,15E−02 2,79E−03 1,78E−03
Wilcoxon test − + −+ − + −+ – − + + ++ – +−

Best 7,66E−01 7,61E−01 7,57E−01 7,61E−01 7,55E−01
Worst 7,65E−01 7,56E−01 7,01E−01 7,56E−01 7,25E−01

Disk Average 7,66E−01 7,59E−01 7,37E−01 7,58E−01 7,43E−01
STD 7,28E−05 1,03E−03 1,40E−02 1,23E−03 7,17E−03
Wilcoxon test + + ++ − + ++ – − – ++ – −

Best 2,84E−01 2,82E−01 1,68E−01 2,82E−01 2,72E−01
Worst 2,84E−01 2,78E−01 0,00E+00 2,75E−01 2,61E−01

Bar Average 2,84E−01 2,81E−01 5,36E−02 2,79E−01 2,69E−01
STD 1,37E−05 1,22E−03 4,21E−02 1,71E−03 2,41E−03
Wilcoxon test + + ++ − + ++ – − – ++ – +−

Best results are marked in bold.
Table 8
Runtime of algorithms for one execution (s).

MOEA-D MOGWO MSSA MOPSO MOMRF0

Zdt1 440.0093 668.2665 89.9722 177.9549 162.5103
Zdt2 374.8618 67.2408 55.2313 205.3638 219.1736
Zdt3 371.5014 448.3240 92.0169 114.7108 180.7861
Zdt4 208.1556 76.3337 43.3857 218.5095 54.5312
Zdt6 370.6754 713.5653 49.8646 141.6082 137.0437

DTLZ1 405.8341 186.3638 56.8196 42.5678 51.5171
DTLZ2 444.8980 543.7021 222.9273 330.8720 106.2344
DTLZ3 433.9067 688.6034 78.0878 92.7621 72.2486
DTLZ4 428.1579 447.3627 150.7616 197.2002 97.9203
DTLZ5 424.8031 437.7445 153.5962 291.6511 180.7067
DTLZ6 453.2583 211.5742 28.6178 174.9252 186.4520
DTLZ7 292.8392 482.3534 83.7363 205.2021 119.2009

BAR 409.3450 409.8567 85.9099 177.3356 114.6190
DISK 562.8505 402.8977 82.7433 162.5823 121.8596
SRD 264.2190 197.1676 90.5698 123.1173 125.6093
WBD 567.3919 468.3748 63.8661 154.0572 123.9263
o
l
s
t

D
𝑥

• The archive population is updated using the epsilon dominance
to ensure a good diversity to the solutions population, obtain
a good approximation of the Pareto set, avoid the explosion of
the archive size and reduce the execution time of the MOMRFO
algorithm.

• Leader’s selection procedure based on crowding distance is used
to improve the diversity of solutions population.

• The performance of MOMRFO is validated by different simula-
tions on five bi-objective test functions, seven three-objective test
functions and four real engineering applications.

The novelty and strength of the MOMRFO lie in the intelligent ex-
loration of search space by using the foraging strategies of Manta Rays
nd the management of the objective space through the archive pop-
lation, the epsilon dominance, the solution leaders and the crowding
istance.

Following the introduction in 1, the remainder of the paper is
rganized as follows. Section 2 presents the fundamental concepts of
OP and briefly overviews the basics of MRFO. Section 3 presents

he MOMRFO algorithm. The experiments and results are introduced
n Section 4. Section 5 concludes the present study and provides some
7

ecommendations for future studies.
2. Background

2.1. Multi-objective optimization

In general, a multi-objective optimization problem (MOP) consists
in optimizing (minimizing or maximizing) a set of 𝑀 objective func-
tions under a set of 𝐽 inequality constraints and a set 𝐾 of equality.
the general form of a MOP is defined as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∶ 𝑓𝑚(𝑥), 𝑚 = 1, 2,… ,𝑀
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 𝑔𝑗 (𝑥) ≥ 0, 𝑗 = 1, 2⋯ , 𝐽

ℎ𝑘(𝑥) = 0, 𝑘 = 1, 2,… , 𝐾
𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖 𝑖 = 1, 2,… , 𝑛

(1)

where 𝑥 is a solution of 𝑛 decision variables: 𝑥 =
(

𝑥1, 𝑥2,… , 𝑥𝑛
)

, which
satisfies 𝐽 inequality constraints and 𝐾 equality constraints. 𝑀 is the
bjective number functions. 𝐿𝑖 and 𝑈𝑖 correspond respectively to the
ower and upper limits of the decision variable. the set of all feasible
olutions is denoted by 𝑆. The resolution of a MOP aims to generate
he Pareto set (PS) or Pareto Front (PF).

efinition 1 (Dominance Relation, Minimization Case). For two solutions
(𝑖) and 𝑥(𝑗), 𝑥(𝑖) is said to Pareto dominates 𝑥(𝑗) (denoted as 𝑥(𝑖) ≺ 𝑥(𝑗)),

if and only if:
(𝑖) (𝑗)
• ∀𝑚 ∈ {1,… ,𝑀} ∶ 𝑓𝑚(𝑥 ) ≤ 𝑓𝑚(𝑥 )
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Fig. 6. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for ZDT1 test function.
• ∃𝑚 ∈ {1,… ,𝑀} ∶ 𝑓𝑚(𝑥(𝑖)) < 𝑓𝑚(𝑥(𝑗))

Definition 2 (𝜀−Dominance). For two solutions 𝑥(𝑖) and 𝑥(𝑗), 𝑥(𝑖) is said
to 𝜀−dominate 𝑥(𝑗), denoted as 𝑥(𝑖) ≺𝜀 𝑥(𝑗), if:

∀𝑘 ∈ 1,… , 𝑚 ∶ (1 − 𝜀𝑘)𝑥
(𝑖)
𝑘 ≤ 𝑥(𝑗)𝑘 (2)

Definition 3 (Non-Dominated Set). Given a solution set 𝐴, the set of
non-dominated solutions 𝐴′, where 𝐴′ ⊆ 𝐴, is a set of all the solutions
that are not dominated by any element of the solution set 𝐴.

Definition 4 (Pareto-Optimal Set). The non-dominated set of the entire
feasible decision space is called the Pareto-optimal set (Pareto front)

2.2. Crowding distance estimation

To maintain the distribution of generated solutions over the Pareto
front, Deb et al. propose the crowding estimator named Crowding
Distance (Deb, Pratap et al., 2002). The crowding distance of solution 𝑖,
estimates the size of the largest cuboid containing the solution 𝑖 without
including any other solution. Firstly, The distance of each solution is
set to 0. For each objective 𝑚, the solutions are sorted in ascending
order according to objective function values 𝑚. The crowding distance
value of each solution is the distance to its two nearest neighbours
8

of the solution 𝑖. The extreme solutions which have the lowest and
highest objective function values are assigned to an infinite distance
value so that they are always selected. The crowding distance values of
the solution 𝑖 corresponding to each objective function are summed to
obtain the final crowding distance value of 𝑖, as explained in Fig. 1

2.3. Manta Ray foraging optimization: A brief overview

Manta Ray foraging optimization (MRFO) is a recent swarm intelli-
gence algorithm proposed by Zhao, Zhang, and Wang (2020) for solving
single-objective optimization problems. MRFO mimics the three intelli-
gent foraging strategies from Manta Rays, including chain, cyclone, and
somersault foraging to solve single optimization problems. The main
features of the Manta Rays are

• Manta Rays are one of the largest known marine creatures.
• Manta rays are mostly made up of microscopic water animals
• Manta Rays feed on plankton.

The Manta Rays have three intelligent foraging strategies.

(1) Chain foraging strategy
Manta rays observe the plankton position and swim towards it by
forming an orderly line. So, the plankton that is missed by the
previous manta rays will be devoured by the following manta
rays. The higher the concentration of plankton in a position, the

better that position is.
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Manta Rays line up, one behind another, forming an orderly line
to start the foraging. Smaller male Manta Rays are carried over
the female to swim above her back to match the beats of pectoral
fins of the female. Consequently, the plankton that has been
missed by the previous Manta Rays will harvest it from behind
them. In this way, they can hunt as many planktons as possible
and improve their nutritional reward.

(2) Cyclone foraging strategy
The second foraging strategy is cyclone foraging. The Manta
Rays gather together on the plankton group and their tail ends
are connected with a helical head to generate a spiralling vortex
in the eye of the cyclone, which causes the filtered water to be
pushed towards the surface. With this, the planktons are pulled
into the mouths of the Manta Rays.

(3) Somersault foraging strategy
The final foraging strategy is somersault foraging. Manta Rays
make a series of backward somersaults when they find a food
source, which helps optimize their food intake.

rom an optimization point of view, MRFO is a population-based meta-
euristic with population 𝑃 (𝑡) of 𝑁 Manta Ray (individual) is evolved

during each iteration 𝑡. The Manta Ray 𝑋𝑖 is represented by a vector of
𝐷 dimensions, where each dimension corresponds to a decision variable
of the optimization problem. The new population 𝑃 (𝑡 + 1) is updated
9

by considering three foraging strategies of Manta Ray behaviour. Thus, w
each new position of the Manta Ray is updated by the flowing for-
aging strategies. The chain foraging behaviour significantly used to
improve the ability of exploitation search. For the cyclone foraging
behaviour is used to enhance the ability of the exploration search.
Regarding, the somersault foraging behaviour is used to enhance the
ability exploitation search and improve the convergence rate.

In chain foraging strategy, the Manta rays observe the plankton
positions and move towards it by forming a foraging chain. Except the
first Manta ray, the Manta rays swim towards both the best solution
obtained so far and the solution in front of it. The mathematical model
of this movement strategy is defined as follows:

𝑥𝑘𝑖 (𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑘𝑖 (𝑡) + 𝑟𝑎𝑛𝑑(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛼(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 1

𝑥𝑘𝑖 (𝑡) + 𝑟𝑎𝑛𝑑(𝑥𝑘𝑖−1(𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛼(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 2,… , 𝑁

(3)

= 2.𝑟.
√

|𝑙𝑜𝑔(𝑟)| (4)

where, 𝑥𝑘𝑖 (𝑡) is the position of 𝑖th individual in iteration 𝑡 at 𝑘th
imension, 𝑟 is a random number within the range of [0, 1], 𝛼 is a weight
oefficient, 𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) is the position with highest plankton concentration.

In cyclone foraging, when a set of Manta Rays finds a plankton

ith high concentration, they will form a long foraging chain and move
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Fig. 8. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for ZDT3 test function.
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owards the food by a spiral movement. In this formation, each Manta-
ay moves towards the plankton position as well as the one in front of

t. The mathematical movement cyclone foraging of Manta Rays can be
efined as:

𝑘
𝑖 (𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) + 𝑟.(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛽.(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 1

𝑥𝑏𝑒𝑠𝑡𝑖 (𝑡) + 𝑟.(𝑥𝑘𝑖−1(𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛽.(𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 2,… , 𝑁

(5)

𝛽 = 2𝑒𝑟
𝑇−𝑡+1

𝑇 .𝑠𝑖𝑛(2𝜋𝑟) (6)

where 𝛽 is the weight coefficient, 𝑇 is the maximum number of itera-
tions, and 𝑟1 is the random number in [0, 1].

All Manta Rays randomly move towards the best plankton position,
so this strategy paves the way to intensively explore fertile regions
around the best position and provide a good exploitation capacity
of the algorithm. The cyclone’s foraging strategy also provides good
exploration capabilities and helps guide the population of individuals
to explore unvisited regions of the search space. In this strategy, we can
force individuals to move to random positions which should be far from
the best plankton position and their current position. The mathematical
model of the exploration mechanism can be modelled as follows:

𝑥𝑘 (𝑡) = 𝐿𝑏𝑘 + 𝑟𝑎𝑛𝑑.(𝑈𝑏𝑘 − 𝐿𝑏𝑘) (7)
10

𝑟𝑎𝑛𝑑 i
𝑥𝑘𝑖 (𝑡 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑘𝑟𝑎𝑛𝑑 (𝑡) + 𝑟.(𝑥𝑘𝑟𝑎𝑛𝑑 (𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛽.(𝑥𝑘𝑟𝑎𝑛𝑑 (𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 1

𝑥𝑟𝑎𝑛𝑑𝑖 (𝑡) + 𝑟.(𝑥𝑘𝑖−1(𝑡) − 𝑥𝑘𝑖 (𝑡))
+𝛽.(𝑥𝑘𝑟𝑎𝑛𝑑 (𝑡) − 𝑥𝑘𝑖 (𝑡)) , 𝑖 = 2,… , 𝑁

(8)

here 𝑥𝑘𝑟𝑎𝑛𝑑 is a random position, 𝐿𝑏𝑘 and 𝑈𝑏𝑘 are the lower and upper
imits of the 𝑘th dimension,respectively.

In the somersault foraging behaviour, each individual tends to
wim to and from around the pivot and somersault to a new position.
herefore, they always update their positions around the best position
𝑏𝑒𝑠𝑡 found so far. The somersault foraging behaviour can be modelled
s follows:
𝑘
𝑖 (𝑡 + 1) = 𝑥𝑘𝑖 (𝑡) + 𝑆.(𝑟1.𝑥𝑘𝑏𝑒𝑠𝑡(𝑡) − 𝑟2.𝑥

𝑘
𝑖 (𝑡)), 𝑖 = 1,… , 𝑁 (9)

here 𝑆 is the somersault factor that decides the somersault range of
anta Rays and 𝑆 = 2, 𝑟1 and 𝑟2 are two random numbers in [0, 1].

. Guided archive population Manta-Ray foraging optimization
or multi-objective optimization

In this section, we present the main phases of MOMRFO to solve
he multi-objective optimization problems. Before going into the details
f the proposed algorithm, we first present the key points and the
ntuitions behind our method.
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Fig. 9. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for ZDT4 test function.
• We integrate a population archive to store and update the ob-
tained non-dominated solutions during the exploration search
processes. Also, the population archive uses to guide the Manta
Rays population to converge toward the Pareto front.

• We use the epsilon-dominance to update the archive population,
avoid the explosion of the size of archive population, improve the
convergence of solutions and enhance the diversity of solutions on
the whole Pareto front during the exploration of search space.

• We use the crowding distance to limit the archive size by delet-
ing the most crowding solutions and we select the leader solu-
tions from the archive population based on crowding distance to
provide a good compromise between convergence and diversity.

The MOMRFO algorithm starts with the initialization of 𝑛 Manta-
ay population in the search space, where each Manta-Ray presents a
otential solution to multi-objective optimization problem (MOP). The
olutions are then evaluated with 𝑀 objective functions. Thereafter,
he archive population is initialized by the non-dominated solutions of
he initial population using the epsilon-dominance and the Manta Ray
eader is selected from the population archive to guide the population
f Manta Rays solutions to converge towards the Pareto front. After the
nitialization step, the MOMRFO applies the three foraging strategies to
xplore the space search of MOP. At each iteration, each Manta-Ray 𝑋𝑖
pdates its position with respect to the position of the one in front of
t (𝑋 ) the current position, and the leader Manta-Ray position.
11

𝑖−1
To explore the space search, firstly the MOMRFO switch between
the cyclone foraging behaviour and the chain foraging behaviour based
on a randomly produced number (when 0.5‘𝑟𝑎𝑛𝑑, it applies the chain
foraging strategy, else, it applies the cyclone foraging strategy) to
update the position of Manta Rays and finally improve the solutions
found so far by the Somersault foraging behaviour.

In cyclone foraging strategy, when 𝑡∕𝑇 < 𝑟𝑎𝑛𝑑 (𝑡: current iteration
and 𝑇 : maximal iteration), each Manta-Ray applies a random move-
ment with respect to a random position which is considered as the best
leader solution and the solution in front of it to improve the exploration
of space search and covers the whole search space by the Manta Rays
population at the start of the exploration process (using Eq. (8)). When
𝑡∕𝑇 > 𝑟𝑎𝑛𝑑, the MOMRFO updates the position Manta-Ray 𝑋𝑖 with
respect the leader Manta-Ray position and the solution in front of it to
improve the exploitation of space search at the end of the exploration
process (using Eq. (5)). Therefore, cyclone foraging provides a good
balance between exploration and exploitation of space search. In the
chain foraging behaviour, the Manta Rays line up head-to-tail to forms
a foraging chain, where each Manta-ray updates its position by the
leader solution and the solution in front of it (using Eq. (3)).

After, the update position of all Manta Rays by the two foraging
strategies (cyclone and chain foraging behaviour), the MOMRFO up-
dates the position of each Manta Ray by somersault foraging strategy to
improve the convergence toward the Pareto front. In the somersault for-
aging strategy, each Manta-Ray updates its position around the leader
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Fig. 10. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for ZDT6 test function.
olution by swims to and from around the pivot and somersault to a
ew position (using Eq. (9)). As explained above, the update of each
anta-Ray position by the three foraging strategies is always guided

y the leader solution which provides a good convergence towards the
rue front. Therefore, the MOMRFO algorithm dynamically updates
he archive population and the solution leader in each movement of
ach Manta-Ray for good exploration efficiency of the search space.
t each end of the iteration of the exploration process, in case the
rchive size is not limited by the epsilon dominance relation. MOMRFO
ses the crowding distance to limit the size of the archive and keeps
nly the archive solutions with a large distance to improve diversity.
urthermore, the algorithm 3 and Fig. 2 outlines the pseudo-code and
he flowchart of the proposed MOMRFO. At the end of the optimization
rocess, MOMRFO extracts the Pareto solutions set from the archive
opulation.

.1. Manta-Ray leader selection

The Manta Ray leaders are the best solutions that guide the Manta
ays population to convergence towards the Pareto front set and im-
rove the diversity of the solutions over the whole Pareto front, which
akes the leader selection strategy a crucial step. In MOMRFO, the
anta Ray leader is selected from the population archive as follows:

• Compute the crowding distance of each solution in the archive
12

population. d
• Sort the archive solutions in descending order according to their
crowding distance.

• Extract the higher part of the sorted archive which contains the
less crowded solutions, where the size of the higher part which
increases dynamically during the exploration process to improve
the diversity of solutions.

• Select randomly a solution from the higher part of the sorted
archive as a Manta Ray Leader to guide the Manta Rays popula-
tion towards the least crowded space to improve the distribution
of solutions along Pareto front.

3.2. Update archive population

The strategy of external archive update is a critical phase in the
optimization process of the proposed algorithm to provide a good
balance between the exploration and the exploitation of space search.
In the MOMRFO algorithm, we use an external archive population with
a limited size. This archive uses to keep the non-dominated solutions
generated so far to contribute in the convergence of the population of
Manta Rays toward the Pareto front. Initially, the archive initializes
by the non dominated solutions of the initial Manta Rays population.
At each iteration, the MOMRFO algorithm calls the update archive
population after the update position of each Manta Ray by one of the
three foraging strategies. The updated archive population uses the 𝜖-

ominance relation to accept or reject the new solution corresponding
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Algorithm 1 Manta Ray foraging optimization
Require:

𝑁 : the size population;
𝑇𝑚𝑎𝑥: the maximal number iteration;

Ensure:
𝑋𝑏𝑒𝑠𝑡 : the best solution;

1: Create an initial population of 𝑛 Manta Ray within d-dimensional
search: 𝑥𝑖𝑘, 𝑖 = 1,⋯ , 𝑁 and 𝑘 = 1,⋯ , 𝑑;

2: Evaluate the fitness of the Manta Ray population;
3: while stopping criterion not met do
4: for 𝑖 = 1 to 𝑁 do
5: if 𝑟𝑎𝑛𝑑 < 0.5 then
6: if 𝑡

𝑇𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑 then

7: Update the position of Manta Ray 𝑋𝑖 using (7) and (8)
8: else
9: Update the position of Manta Ray 𝑋𝑖 using (5) and (6)
0: end if{ Chain foraging strategy}
1: else
2: Update the position of Manta 𝑋𝑖 Ray using (3)

13: end if
14: Update the position of best solution 𝑋𝑏𝑒𝑠𝑡;
15: end for{ Somersault foraging strategy}
16: for 𝑖 = 1 to 𝑁 do
17: Update the position of Manta 𝑋𝑖 Ray using (9)
18: Update the position of best solution 𝑋𝑏𝑒𝑠𝑡;
19: end for
20: end while
21: Return the best solution found so far 𝑋𝑏𝑒𝑠𝑡;

to the new position of Manta Ray by the archive population 𝐴. Fur-
thermore, Fig. 3 and the algorithm 2 outlines the flowchart and the
pseudo-code of the update archive population procedure.

For archive solutions 𝐴(𝑡) and the new solution 𝑋𝑛𝑒𝑤 corresponding
to the new position of Manta Ray solution, we associate an identifi-
cation vector 𝐵 = (𝐵1, 𝐵2,… , 𝐵𝑀 )𝑇 , where 𝑀 denotes the objective
unction number of MOP, as follows:

𝑗 (𝑓 ) = ⌊

log(𝑓𝑗 )
log(𝜖 + 1)

⌋ (10)

here ⌊⋅⌋ is denotes the absolute value, 𝑓𝑗 : the objective value 𝑗th of an
rchive solution and 𝜖 present the admissible error. The identification
ector can divides the criteria space into hyper-boxes.

A new Manta-Ray solution is compared with all the solution of
rchive population using 𝜖-dominance relation to decide if this solution
s accepted into the archive population. More precisely, MOMRFO com-
ares the new solution 𝑋𝑛𝑒𝑤 with all solutions of archive population.
f the identification vector 𝐵𝑋𝑛𝑒𝑤 of the new solution dominates the
ubset identification vectors 𝐷 of archive population, the new solution
𝑛𝑒𝑤 is accepted and the subset of the solution is deleted from pop-
lation archive. If the identification vector of the new solution 𝑋𝑛𝑒𝑤
s dominated by the identification vector 𝐵𝑎 of any archive solution 𝑎,
hen the new solution 𝑋𝑛𝑒𝑤 is 𝜖-dominated by the archive solution 𝑎
nd so the new solution is rejected.

If neither of the above two cases occurs, then the new solution 𝑋𝑛𝑒𝑤
is equivalent to the archive solutions with 𝜖-dominance relation. We
can differentiate this into two cases:

1. If the new solution 𝑋𝑛𝑒𝑤 and an archive solution 𝑎 share the
same identification vector 𝐵. If the new solution 𝑋𝑛𝑒𝑤 domi-
nates the archive solution or the new solutions 𝑋𝑛𝑒𝑤 is equiva-
lent to the archive solution but is closer to the identification 𝐵
vector than the archive solution, then the new solution 𝑋𝑛𝑒𝑤 is
13

accepted. m
2. In the event of a new solution 𝑋𝑛𝑒𝑤 is not sharing the same
𝐵 vector with any archive solution, the new solution 𝑋𝑛𝑒𝑤 is
accepted.

Algorithm 2 Update the archive population
Require: 𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝑡): the external archive population 𝐴𝑟𝑐ℎ𝑖𝑣𝑒 at

iteration 𝑡, and 𝑋𝑛𝑒𝑤: the new Manta Ray solution
1: compute the identification vector for new solution 𝑋𝑛𝑒𝑤 and all

solutions of the external archive population 𝐴(𝑡);
2: if ∃𝑋 ∈ 𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝑡)|𝐵𝑋 ⪰ 𝐵𝑋𝑛𝑒𝑤 then
3: 𝑋𝑛𝑒𝑤 is rejected;
4: end if
5: if ∃𝑋 ∈ 𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝑡)|𝐵𝑋𝑛𝑒𝑤 ⪰ 𝐵𝑋 then
6: 𝑋𝑛𝑒𝑤 replaces 𝑋 in 𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝑡);
7: end if
8: if Neither of the above two cases occur then
9: if ∃𝑎 ∈ 𝐴(𝑡)|𝐵𝑐 ∼ 𝐵𝑎 then
0: if 𝑐 ∼ 𝑎 then
1: Keep the solution with the smallest distance to the

identification vector B;
2: else
3: Keep the solution that dominates the other;
4: end if
5: else
6: Add the solution 𝑋𝑛𝑒𝑤 in the external archive population

𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝑡);
7: end if
8: end if

3.3. Limitation of the archive population size

In case the archive size exceeds the maximum size (Tmax). MOM-
RFO uses the crowding distance to limit the archive size as follows:

• Compute the crowding distance of each archive solution.
• The archive solutions are sorted in decreasing order according to

their crowding distance.
• The less crowded solutions are kept and the most crowded solu-

tions are removed from the archive population to limit the archive
size to (Tmax).

The crowding distance uses to keep only the archive solutions with a
large distance to improve the diversity of the archive solutions.

3.4. Complexity of MOMRFO algorithm

The time complexity of the proposed MOMRFO depends, obvi-
ously, on the original movements of MRFO algorithm, and on the new
modules introduced in MRFO that deal with the multi-objective opti-
mization problems. In the main loop, the proposed algorithm performs
the three MRFO original movements, then performs the update of the
population archive population and the leader solution selection. There-
fore, the time complexity of the proposed algorithm can be estimated
as follows:

O(MOMRFO) = 𝑁max(O(Movements of MRFO), O(Update archive
opulation), O(Leader solution selection)), where 𝑁 is the population

size. The time complexity of three movements of MRFO is 𝑀𝐷𝑁 ,
where, 𝑀 : the number of objective functions, 𝐷: the number of decision
variables, and 𝑁 : the population size.

After the execution of the MRFO movements, the MOMRFO updates
the archive with an 𝑂(𝑀𝑁𝐴) complexity, where 𝑁𝐴 is the number of
ndividuals in the archive population. The last operation, during the
ain loop of MOMRFO, is the selection of the leader which is similar in
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Fig. 11. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for DTLZ2 test function.
erms of complexity to the update of the population archive. Therefore,
he complexity of the proposed algorithm is given by:

(MOMRFO) = 𝑁max(O(𝑀𝐷𝑁),O(𝑀𝑁𝐴),O(𝑀𝑁𝐴))

Hence, O(MOMRFO) = 𝑁O(𝑀𝑁𝐴) = O(𝑀𝑁2)
The complexity of our algorithm is better than some classical al-

gorithms such as NSGA, and is similar to NSGA-II (Deb, Pratap et al.,
2002), SPEA2 (Zitzler, Laumanns, Thiele, et al., 2001), MSSA (Mirjalili
et al., 2017), and MOPSO (Coello, Pulido, & Lechuga, 2004). However,
it looks is worse than the prominent MOEA/D (Zhang & Li, 2007).

4. Results and discussion

In this section, we discuss the performance of MOMRFO algo-
rithm for solving multi-objective optimization problems. We begin
by describing the benchmark tests and performance metrics used in
our experimental study. Then, we present the state-of-the-art multi-
objective metaheuristics used to validate the performance of the pro-
posed algorithm. Next, we present the settings parameter used for the
comparative studies of these algorithms. We also present the statistical
results of these algorithms. Finally, we discuss the different obtained
14
results. MOMRFO is compared with four state-of-the-art algorithms
(MOEA/D (Zhang & Li, 2007), MOGWO (Mirjalili, Saremi, Mirjalili, &
Coelho, 2016), MOPSO (Coello et al., 2004) and MSSA (Mirjalili et al.,
2017)) on five bi-objective test functions, namely ZDT-series (Zitzler,
Deb, & Thiele, 2000), and seven three-objective test functions, namely
DTLZ-series (Deb, Thiele, Laumanns and Zitzler, 2002). The character-
istics of bi-objective test functions and three-objective test functions
are presented in Table 1. To confirm the performance of the proposed
algorithm, the MOMRFO is tested on engineering design problems such
as four-bar truss (FBT) design, welded beam deign (WB), disk brake
design (DB), and speed reduced design (SR).

4.1. Comparison of multi-objective metaheuristics

In this comparison, we evaluated the performance of MOMRFO
with four multi-objective metaheuristics which are briefly presented as
follows:

• Multi-objective evolutionary algorithm based on decomposition
(MOEA/D): which uses the reference points and the decomposi-
tion of criteria space to maintain the diversity and improve the
convergence (Zhang & Li, 2007);



Expert Systems With Applications 189 (2022) 116126D. Zouache and F.B. Abdelaziz

F
p
M
j
s
t

Fig. 12. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for DTLZ4 test function.
• Multi-objective Grey Wolf Optimizer (MOGWO): which integrates
a fixed-sized external archive and the Pareto dominance to con-
verge toward the Optimal Pareto set; Mirjalili et al. (2016).

• Multi-objective Particle Swarm Optimization (MOPSO): which
uses an external population and the leader solution to guide the
particles solutions toward the Optimal Pareto set (Coello et al.,
2004);

• Multi-objective Salp Swarm Algorithm (MSSA): which integrates
an external repository to keep the non-dominated solutions ob-
tained during the optimization process of Salp Swarm Algorithm
(SSA) and the Pareto dominance relation to solve multi-objective
problems (Mirjalili et al., 2017).

or the parameter setting of compared algorithms, we use the same
arameters as the original papers (MOGWO Mirjalili et al., 2016,
OPSO Coello et al., 2004, MOEA/D Zhang & Li, 2007 and MSSA Mir-

alili et al., 2017). The population size of all the algorithms used in this
tudy is set to 100. Each test function was run 31 times. In each run,
15

he maximal number of iterations for all algorithms is set to 1000.
4.2. Parameter’s analysis

The performance of proposed algorithm depends on the parameters
of the original MRFO algorithm and the parameters of the new intro-
duced modules into MRFO. The later does not require any parameters
during the optimization process, for that, the two parameters which can
influence the performances of the proposed algorithm are: the size of
archive population and the epsilon value of dominance relation.

In this study, we experiment the effect of the archives size and the
epsilon value on the behaviour of the proposed algorithm. We modified
the size of archive as well as the value of epsilon. We present in Fig. 4,
the variation of the HV metric and the IGD metric during the 1000
iterations (one run) for DTLZ2 test function with three different size
values of the archive population (50, 100, and 200), and we present in
Fig. 5, the variation of the HV metric and the IGD metric during the
1000 iterations (one run) for DTLZ2 test function with three different
epsilon values (0.01, 0.1 and 0.5). From Fig. 4, we notice that for
DTLZ2, the IGD value is significantly minimized and the HV value is
significantly maximized during the 1000 iterations with 200 archive
size compared to 50 and 100 sizes. From Fig. 5, we notice that there

is a small difference between the results of IGD metric or HV metric
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Algorithm 3 Multi-objective Manta Ray foraging optimization
Require:

𝑁 : the size population;
𝑇𝑚𝑎𝑥: the maximal number iteration;

Ensure:
𝑋𝑏𝑒𝑠𝑡 : the best solution;

1: Create an initial population of 𝑛 Manta Ray within d-dimensional
search: 𝑥𝑖𝑘, 𝑖 = 1,⋯ , 𝑁 and 𝑘 = 1,⋯ , 𝑑;

2: Evaluate the Manta Ray population with 𝑀 objective functions;
3: Safeguard the non-dominated solutions set of the initial population

in archive population;
4: Select the leader Manta Ray from non-dominated solutions;
5: while stopping criterion not met do
6: for 𝑖 = 1 to 𝑁 do
7: if 𝑟𝑎𝑛𝑑 < 0.5 then
8: if 𝑡

𝑇 < 𝑟𝑎𝑛𝑑 then
9: Move Manta Ray 𝑥𝑖(𝑡) towards the new position 𝑥𝑖(𝑡 + 1)

according the cyclone foraging strategy using (8)
0: else
1: Move Manta Ray 𝑥𝑖(𝑡) towards the new position 𝑥𝑖(𝑡 + 1)

according the cyclone foraging strategy using (5)
2: end if{ Chain foraging strategy}
3: else
4: Move Manta Ray 𝑥𝑖(𝑡) towards the new position 𝑥𝑖(𝑡 + 1)

according the chain foraging strategy using (3)
5: end if
6: Update the archive population using Alg.2;
7: Update the leader Manta Ray using the phases of leader

selection presented in Section 3.1;
8: end for{ Somersault foraging strategy}
9: for 𝑖 = 1 to 𝑁 do
0: Move Manta Ray 𝑥𝑖(𝑡) towards the new position 𝑥𝑖(𝑡 + 1)

according the somersault foraging strategy using (9)
1: Update the archive population using Alg.2;
2: Update the leader Manta Ray using the phases of leader

selection presented in Section 3.1;
3: end for
4: end while
5: Extract the Pareto set from the archive population;

for the three epsilon values. That is to say, there is an improvement
in the performance of the proposed algorithm whenever the size of
archive is increased. However, it should be noticed that increasing the
size of the archive increases the number of evaluations, which affects
the computational cost.

4.3. Performance metrics

To evaluate the performance of the different algorithms used in
our study, we use the inverted generational distance (IGD) and the
Hyper-Volume (HV) as performance metrics. Both can simultaneously
measure the convergence and diversity of the obtained solution set.
The IGD is one of the most widely used metrics. It can simultaneously
measure the convergence and diversity of the obtained solution set, by
calculating the minimum distance sum between each individual on the
Pareto front 𝑃 ∗ and the solutions set 𝑆 obtained by a multi-objective
algorithm (Sierra & Coello, 2004; While, Hingston, Barone, & Huband,
2006). IGD of 𝑆 is computed as follows:

𝐼𝐺𝐷(𝑆, 𝑃 ∗) =
∑

𝑥∈𝑃 ∗ 𝑑𝑖𝑠𝑡(𝑥, 𝑆)
|𝑃 ∗

|

(11)

here 𝑑𝑖𝑠𝑡(𝑥;𝑆) is the Euclidean distance between an individual 𝑥 of 𝑃 ∗

nd its nearest neighbour in 𝑆, and |𝑃 | is the cardinality of 𝑃 . The IGD
alue is low, then the better convergence and diversity of 𝑆 is obtained.
16

F

The HV is an indicator that measures the size of the hypercube
ominated by the solutions in 𝑆 (Zitzler & Thiele, 1999). the indicator
V can be computed as follows:

𝑉 (𝑆) = 𝑉 𝑂𝐿(
⋃

𝑥∈𝑆

[

𝑓1(𝑥), 𝑟∗1
]

×⋯
[

𝑓𝑚(𝑥), 𝑟∗𝑚
]

) (12)

here 𝑉 𝑂𝐿 indicates the Lebesgue measure and 𝑟 = (𝑟∗1 , 𝑟
∗
2 ,… , 𝑟∗𝑚)

ndicate a reference point in the objective space that is dominated by
ll the approximation 𝑆. The larger the HV value is, the better the
onvergence and diversity is obtained.

To verify if there is a significant difference between our MOMRFO
nd the considered algorithms, we use the ‘Wilcoxon’ non-parametric
tatistical test (Derrac, García, Molina, & Herrera, 2011). Given a
ignificance level 𝛼, we say that there is no significant difference
etween algorithms if 𝑝_𝑣𝑎𝑙𝑢𝑒 ≤ 𝛼 (i.e. the null hypothesis 𝐻0 is
alidated), otherwise (𝑝_𝑣𝑎𝑙𝑢𝑒 > 𝛼), there is a significant difference
etween algorithms (i.e. the alternative hypothesis 𝐻1 is validated).
he Wilcoxon test is applied on each couple of algorithms on the results
f IGD and HV metrics, with a significance level equal to 5%. The
ypotheses 𝐻0 and 𝐻1 are defined below, knowing that 𝜇1 and 𝜇2
epresent the results of the first algorithm and the second algorithm,
espectively.

For IGD metric, the hypotheses of the Wilcoxon test are defined as
ollows:

0 ∶ 𝜇1 ≥ 𝜇2

1 ∶ 𝜇1 < 𝜇2

For HV metric, the hypotheses of Wilcoxon test are defined as
ollows:

0 ∶ 𝜇1 ≤ 𝜇2

1 ∶ 𝜇1 > 𝜇2

The null hypothesis 𝐻0 indicates that the IGD and HV of the first
lgorithm are similar or worst to the IGD and HV of the second
lgorithm as shown in the statistical results tables by (−); while the
lternative hypothesis 𝐻1 indicates that the IGD and HV of the first
lgorithm are better than the IGD and HV of the second algorithm,
hown in the statistical results tables by (+).

.4. Results on ZDT test functions

In this subsection, we investigate the performance of the proposed
OMRFO in the bi-objective test functions which are named ZDT func-

ions. Table 2 reports the statically results of five compared algorithms
n terms of IGD metric over 31 runs to ZDT test functions while Table 3
eports the statical results of five compared algorithms in terms HV
etric over 31 runs to ZDT test functions. These statistical results of

he IGD metric prove that in all ZDT test functions, where ZDT1 has a
onvex front, ZDT2 has a non-convex front, ZDT 3 has a discontinuous
ront and the ZDT4 function has a many Pareto local fronts 219 and
DT6 function has a non-uniform search space, the MOMRFO converges
asily to the Pareto set. In terms of HV metric, The statistical results
rove that the proposed MOMRFO outperforms the other algorithms on
ll ZDT function tests. Additionally, the visual observations in Figs. 6,
, 8, 9 and 10 confirm that the non dominated solutions obtained by
OMRFO on all ZDT functions are well-distributed along the Pareto

ront.

.5. Results on DTLZ test functions

In this subsection, we apply the MOMRFO algorithm to three-
bjective test functions which are called DTLZ functions and compare
he results with MOGWO, MSSA, MOPSO and MOEA/D. The results
f IGD and HV are given in Tables 4 and 5 respectively, whereas

igs. 11, 12, 13, 14 and 15 illustrate the Pareto set obtained by each
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Fig. 13. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for DTLZ5 test function.
lgorithm on DTLZ test functions. According to the statistical results of
GD metric presented in Table 4, the proposed MOMRFO provides the
est convergence towards the true optimal set compared to the other
lgorithms. More precisely, in all DTLZ test functions, the proposed
OMRFO ensures the better statistical results for IGD compared to

ther algorithms with a very low standard deviation which means
hat the MOMRFO algorithm is the most stable algorithm. In all DTLZ
est functions, we can observe that MSSA and MOPSO algorithms
btain the lowest performance in terms of convergence among the five
omparative algorithms.

Tables 5 present the statistical results of HV metric for DTLZ test
unctions. These results prove that the diversity of non-dominated solu-
ions obtained by MOMRFO algorithm outperforms the other compared
lgorithms in all DTLZ test functions in terms of HV metric. From
he statistical results presented in Tables 4 and 5, and the qualitative
esults illustrated in Figs. 11, 12, 13, 14 and 15, we confirm that the
OMRFO algorithm provides an excellent convergence behaviour with

he best diversity of obtained non-dominated solutions set compared to
he other algorithms in all DTLZ test functions.
17
4.6. Multi-objective engineering design problems

In this subsection, we apply the MOMRFO on four real engineering
designs which are popular in the engineering design field (Askarzadeh,
2016; Got et al., 2020; Sadollah, Eskandar, Bahreininejad, & Kim,
2015). The engineering design problems are as follows: one problem
without constraints (Four-bar truss design problem), and three prob-
lems with high constraints (Speed reduced design, Disk brake design
problem, Welded beam design problem and).

∙ Four bar truss problem: This classical engineering design aims
to minimize simultaneously the volume and displacement of a
four-bar truss. This engineering problem has a highly constrained
search space (Coello & Pulido, 2005). This problem can be for-
mulated as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

⎧

⎪

⎨

⎪

⎩

𝑓1(𝑥) = 𝐿(2𝑥1 +
√

2𝑥2 +
√

𝑥3 + 𝑥4)

𝑓2(𝑥) =
𝐹𝐿
𝐸 ( 2

𝑥2
+ 2

√

2
𝑥2

− 2
√

2
𝑥3

+ 2
𝑥4
)

(13)

where

𝐹 = 10, 𝐸 = 2𝑒5, 𝐿 = 200
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Fig. 14. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for DTLZ6 test function.
1 ≤ 𝑥1, 𝑥4 ≤ 3,
√

2 ≤ 𝑥2, 𝑥3 ≤ 3

∙ Speed reduced design (SR): The purpose of this design problem
is to minimize both the weight of the gear assembly and the
transverse deflection of the simultaneously optimized shaft. This
problem under the design constraints such as the surfaces stress,
transverse deflections of the shafts, bending stress of the gear
teeth and stresses in the shafts. This design problem has seven
design variables: the face width, a module of teeth, number of
teeth in the pinion, length of the first shaft between bearings,
length of the second shaft between bearings and the diameter of
the first and second shafts (Coello & Pulido, 2005). This problem
can be formulated as:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓1(𝑥) = 0.7854𝑥1𝑥22
(

3.3333𝑥23 + 14.9334𝑥3 − 43.0934
)

−1.508𝑥1
(

𝑥26 + 𝑥27
)

+7.4777
(

𝑥36 + 𝑥37
)

+ 0.7854
(

𝑥4𝑥26 + 𝑥5𝑥27
)

𝑓2(𝑥) =

√

( 745𝑥4𝑥2𝑥3
)2+16.9𝑒6

110𝑥36
18

(14)
Subject to:

𝑔1 =
27

𝑥1𝑥22𝑥3
− 1 ⩽ 0

𝑔2 =
397.5
𝑥1𝑥22𝑥

2
2

− 1 ⩽ 0

𝑔3 =
1.93𝑥34
𝑥2𝑥46𝑥3

− 1 ⩽ 0

𝑔4 =
1.93𝑥35
𝑥2𝑥47𝑥3

− 1 ⩽ 0

𝑔5 =

[

(

745𝑥4∕𝑥2𝑥3
)2 + 16.9 × 106

]1∕2

110𝑥3
− 1 ⩽ 0

𝑔6 =

[

(

745𝑥5∕𝑥2𝑥3
)2 + 157.5 × 106

]1∕2

85𝑥37
− 1 ⩽ 0

𝑔7 =
𝑥2𝑥3
40

− 1 ⩽ 0

𝑔8 =
5𝑥2 − 1 ⩽ 0

𝑥1
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Fig. 15. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for DTLZ7 test function.
𝑔9 =
𝑥1
12𝑥2

− 1 ⩽ 0

𝑔10 =
1.5𝑥6 + 1.9

𝑥4
− 1 ⩽ 0

𝑔11 =
1.1𝑥7 + 1.9

𝑥5
− 1 ⩽ 0

where

2.6 ⩽ 𝑥1 ⩽ 3.6, 0.7 ⩽ 𝑥2 ⩽ 0.8, 17 ⩽ 𝑥3 ⩽ 28,

7.3 ⩽ 𝑥4 ⩽ 8.3, 7.3 ⩽ 𝑥5 ⩽ 8.3, 2.9 ⩽ 𝑥6 ⩽ 3.9, 5.0 ⩽ 𝑥7 ⩽ 5.5

∙ Disk brake design problem: The purpose of this design problem
is to minimize simultaneously the overall mass and the braking
time. The space search of this problem is defined on four design
variables, the inner radius, outer radius, the engaging force and
the number of friction surfaces. In addition, it is constrained by
the torque, pressure,temperature, and length of the brake (Ray &
Liew, 2002). The mathematical formulation used for modelling
19
this problem is as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

⎧

⎪

⎨

⎪

⎩

𝑓1(𝑥) = 4.9𝑒 − 5(𝑥22 − 𝑥21)(𝑥4 − 1)

𝑓2(𝑥) = (9.82𝑒6)
𝑥22−𝑥

2
1

𝑥3𝑥4(𝑥32−𝑥
3
1)

(15)

Subject to:

𝑔1 = 20 + 𝑥1 − 𝑥2
𝑔2 = 2.5(𝑥4 + 1) − 30

𝑔3 =
𝑥3

3.14(𝑥22 − 𝑥21)
2
− 0.4

𝑔4 = 2.22𝑒 − 3𝑥3
𝑥32 − 𝑥31

(𝑥22 − 𝑥21)
2
− 1

𝑔5 = 900 −
2.66𝑒 − 2𝑥3𝑥4(𝑥33 − 𝑥31)

𝑥22 − 𝑥21
where

∀𝑔 ≤ 0
𝑖
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Fig. 16. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for Welded beam design problem.
55 ≤ 𝑥1 ≤ 80, 75 ≤ 𝑥2 ≤ 110, 1000 ≤ 𝑥3 ≤ 3000, 2 ≤ 𝑥4 ≤ 20

∙ Welded beam design problem:
The purpose of this design problem is to minimize both the overall
fabrication cost and the end deflection. This design problem
subject to several constraints such as shear stress, bending stress,
weld length and the buckling load. Also, this design problem
has four design variables which are the height, the length of the
welded joint, thickness, and the width of the beam (Deb, Pratap,
& Moitra, 2000).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

{

𝑓1(𝑥) = 1.10471𝑥21𝑥2 + 0.04811𝑥3𝑥4(14 + 𝑥2)
𝑓2(𝑥) = 𝑑𝑒𝑙

(16)

Subject to:

𝑔1 = −(𝑡𝑎𝑢 − 𝑡𝑎𝑢𝑚𝑎𝑥)

𝑔2 = −(𝑠𝑖𝑔 − 𝑠𝑖𝑔𝑚𝑎𝑥)

𝑔3 = −(𝑥1 − 𝑥4)

𝑔4 = −(𝑃 − 𝑝𝑐)

where,

𝑝𝑐 = (
4.013 ∗ 𝐸

√

𝑥23𝑥
6
4

36
)(1 − ((

𝑥3 )
√

𝐸 ))
20

𝐿2 2𝐿 4𝐺
𝑑𝑒𝑙 = 4𝑃𝐿3

𝐸𝑥33𝑥4

𝑠𝑖𝑔 = 6𝑃𝐿
𝑥4𝑥23

𝐽 = 2 ∗ (
√

2𝑥1𝑥2((
𝑥22
12

) + (
𝑥1 + 𝑥3

2
)2))

𝑅 =

√

(
𝑥22
4
) + (

𝑥1 + 𝑥3
2

)2

𝑀1 = 𝑃 ∗ (𝐿 +
𝑥2
2
)

𝑡𝑎𝑢2 = 𝑀1𝑅
𝐽

𝑡𝑎𝑢1 = 𝑃
√

2𝑥1𝑥2

𝑡𝑎𝑢 =
√

𝑡𝑎𝑢12 + 2.𝑡𝑎𝑢1.𝑡𝑎𝑢2.
𝑥2
2𝑅

+ 𝑡𝑎𝑢22

∀𝑔𝑖 ≥ 0

𝑃 = 6000, 𝐿 = 14, 𝐸 = 30𝑒6, 𝐺 = 12𝑒6,

𝑡𝑎𝑢𝑚𝑎𝑥 = 13 600, 𝑠𝑖𝑔𝑚𝑎𝑥 = 30 000

0.125 ≤ 𝑥1, 𝑥4 ≤ 5, 0.1 ≤ 𝑥2, 𝑥3 ≤ 10

To deal with the constraints of these engineering problems and to ex-
plore the feasible space search, we use the static penalty method which
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t
2

Fig. 17. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for Speed reduced design.
ransforms a constrained problem into an unconstrained problem (Rao,
019). Therefore, if any constraint is violated, a penalty 𝑃𝑖 is added to

the objective function value 𝑓𝑖(𝑥) as follows:

𝑓𝑚(𝑥) = 𝑓𝑚(𝑥) +
𝑝
∑

𝑖=1
𝑃𝑖.𝑚𝑎𝑥(𝑔𝑖(𝑥), 0) +

𝐾
∑

𝑖=1
𝑃𝑖.𝑚𝑎𝑥(||ℎ𝑖(𝑥)|| − 𝛿, 0) (17)

where

𝑓𝑚(𝑥), 𝑚 = 1, 2,… ,𝑀 are the objective number functions.
𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, 2,… , 𝑃 are inequality constraints.
ℎ𝑖(𝑥) = 0, 𝑖 = 1, 2,… , 𝐾 are equality constraints.

𝑃𝑖 is the penalty factor and 𝛿 is the tolerance on the equality constraints
to consider it as a feasible.

The severeness of the penalty function depends on the penalty
factors 𝑃𝑖. A large penalty precludes exploring the unfeasible region.
In contrast, a small penalty will explore the unfeasible regions; thus
MOMRFO uses a big penalty factors 𝑃𝑖 to avoid the exploration of
unfeasible regions and ensure the feasibility of the Pareto solutions set.
The results of IGD and HV for the four engineering design problems
are given in Tables 6 and 7 respectively, whereas Figs. 16, 17, 18 and
19 illustrate the Pareto set obtained by each algorithm on engineering
design problems. By observing of the IGD results obtained in Table 6,
the proposed MOMRFO provides the best convergence towards the true
optimal set compared to the other algorithms for all engineering design
problems. More precisely, the proposed MOMRFO ensures the better
21
statistical results of IGD for engineering design problems with high
constraints (Disk brake design problem and welded beam design prob-
lem) or without constraints (Four-bar truss design problem and gear
train problem). Also, MOMRFO algorithm has the best performance in
terms of HV on all engineering design problems compared the other
considered algorithms. According to these statistical results reported in
Tables 6 and 7, and the Pareto set obtained for compared algorithms
which are illustrated in Figs. 16, 17, 18 and 19, we can conclude that
the MOMRFO algorithm has an excellent convergence and diversity
behaviours for the considered engineering design problems.

According to the results of Wilcoxon statistical test reported in the
Tables 2, 3, 4, 5, 6 and 7, we observe that almost in all the bi-objective
test functions, three objectives test functions and engineering design
problems, the hypothesis 𝐻1 is accepted for MOMRFO algorithm in
terms of IGD or HV (MOMRFO minimizes the values of IGD com-
pared to the other algorithms or MOMRFO maximize the values of HV
compared to the other algorithms) with a significance level greater
than 95%. Consequently, the Wilcoxon statistical test confirms that
the MOMRFO algorithm converges better towards the Pareto front and
improves the diversity of Pareto set with a significance level higher

than 95%.
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Fig. 18. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for disk brake design problem test function.
.7. Running time analysis

The running time is also taken into account in our simulation. For
his reason, all algorithms are executed one time with 1000 iterations,
nd the results are reported in Table 8 in terms of seconds.

From Table 8, it can be seen that MSSA is the fastest algorithm
or most test functions. It achieves the best time in eleven out of the
ixteen test functions. The second fastest algorithm is MOMRFO, which
btain the best values for three DTLZ test functions (DTLZ2, DTLZ3
nd DTLZ4), and achieves the best time after MSSA for the other test
unctions. In this study, we can see that the slowest algorithms with

great difference are MOGWO and MOEAD that consume a lot of
xecution time. Broadly speaking, the proposed algorithm significantly
utperforms both MOGWO and MOEA/D in terms of computational
ime, and it was very competitive compared to MSSA algorithm.

.8. Further discussion

In this study, the proposed MOMRFO algorithm is applied on dif-
erent test functions such as ZDT test functions, DTLZ test functions
nd the real engineering application such as the disk brake design,
elded beam design, four-bar truss design and speed reduced design. In

omparison with other algorithms, the statistical results of evaluation
22

etrics prove that the MOMRFO algorithm performs the almost all test
functions (bi-objective test functions and three-objective test function)
and almost all engineering design problems, and converges to Pareto set
without suffering, while the other algorithms suffer to converge toward
Pareto set. Moreover, the high performance of MOMRFO on engineer-
ing design problems confirmed in this study, helps in solving many real
engineering applications. The reasons behind this performance can be
described as follows:

• The high performance of MOMRFO is due to the good explo-
ration strategies used by MRFO algorithm during the optimization
process, where the Manta Rays population switch between the cy-
clone foraging strategy and the chain foraging strategy to improve
the exploration of space search Manta Rays and uses at the end
of the optimization process the somersault foraging strategy to
improve the exploitation of space search.

• The relevant multi-objective optimization tools introduced in
MRFO algorithm to solve the multi-objective optimization prob-
lems which are:

1. The use of external archive population into the MOMRFO
to keep the best non-dominated solutions obtained dur-
ing the process optimization and guide the MOMRFO to
explore the fertile regions of space search.

2. The use of 𝜖-dominance in updating the archive population
allows to obtain a good approximation of the Pareto set,
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Fig. 19. Pareto optimal fronts obtained by MOMRFO, MOPSO, MOGWO, MSSA and MOEA/D for Four bar truss problem.
avoid the explosion of the archive size and reduce the
execution time of the MOMRFO algorithm.

3. The selection of Leader’s solutions from the archive popu-
lation and the use of crowding distance in the selection of
Leader solutions that allows a good balance between the
exploration and the exploitation of the search space.

However, the proposed algorithm needs to be adapted to many-
objective optimization problems (MoaPs):

• The use of distance crowding and the 𝜖-dominance relation is very
effective for a multi-objective optimization problem with 2 or 3
objectives because they can offer a good balance between con-
vergence and diversity. However, in many-objective optimization
with more than 5 objectives, these concepts fail to handle the
explosion of non-dominated solutions. To extend the MOMRFO al-
gorithm to solve the problems of MoaPs. it is necessary to use new
dominance relations to discriminate between the non-dominated
solutions.

• The proposed algorithm depends on the epsilon value to up-
date the population archive. The bad choice of this parameter
can influence negatively on the optimization performances of
the algorithm MOMRFO. So, the MOMRFO algorithm requires
new dominance relations to obtain the set of the Pareto front
23

independently of the choice of epsilon.
• To improve the diversity of the population archive, the MOMRFO
algorithm uses a crowding distance which favours following ex-
treme points during the optimization process instead of checking
solutions that present good compromise between the objectives.
This problem can be solved by using other diversity estimation
methods or by improving the used distance.

5. Conclusion

This paper presented a guided archive population Manta-Ray forag-
ing algorithm (MOMRFO) for solving large-scale multi-objective opti-
mization problems. The main ideas of our algorithm can be summarized
as follows. Firstly, we integrate the population archive to store and
update the obtained non-dominated solutions during the exploration
search processes. Secondly, we used the leader’s solution to guide the
population towards promising regions of the search space. Finally, we
introduced the epsilon dominance and crowding distance to update the
population archive, avoid the explosion of the archive population size
and enhance the solutions diversity. The proposed algorithm was tested
and compared with four state-of-the-art algorithms on five bi-objective
test functions, seven three-objective test functions, and the structural
design problems such as 4-bar truss design, gear train problem, welded
beam design, and disk brake design. The obtained experimental results
have proven that the proposed algorithm is very efficient in solving of
MOPs problems in terms of convergence and diversity. Our future work
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can be carried out in the following two aspects. Firstly, we are modi-
fying the proposed algorithm to solve the many-objective optimization
problem and secondly, we are looking for real-world applications with
many objectives to prove the performance of our method.
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