
TRÂN HOÀI LINH
TRƯƠNG TUẤN ANH

TRẦN HOÀI L IN H , TRƯƠNG TUẤN ANH

ARTIFICIAL INTELLIGENCE

NHÀ XUẤT BẢN ĐẠI HỌC THÁI NGUYÊN
NẤM 2017

01 - 1 <65 i
MÃ s ó : -----------------------

ĐHTN - 2 0017

2

Preface
The Dook forms an introduction to Artificial Intelligence for the students of

Computer Science and Electrical Engineering. Undergraduate students are
required to have at least the chapters 1, 2, 3, 5 and 6. Graduate students may
have addtional minor projects to support the learning materials.

AI development mainly started in XX century. The history of AI includes
up and dw n sides. It’s filled with various approaches: from purely theoretical
idleas anc thoughts to pattern recognition overlearning tools. In the last decade,
thiere hasbeen more and more practical applications of AI in reality.

Artificial intelligence is still far reaching the human level. It's been more
thtam 60 years since John McCarthy, the father of artificial intelligence, used this
teimn for the first time at a Dartmouth College conference.

The most important processes and functions that make up human
inttalligerce

• Learning and using knowledge, generalizability, perception and
cognitive abilities, such as the ability to recognize a given object in any
context.

• Memorization, goal setting and achievement, collaboration, formulation,
analysis, conceptual and abstract thinking.

The ability to learn is widely regarded as one of the most important
manifestations of intelligence. Data is the driving force of artificial intelligence.
T h e more data the machine has about the problem, the better it can anticipate
arndt learr A good example of AI excellent achievement is the automatic
learning of games playing.

Despte the enormous interest in AI issues and the involvement of research
funding, there is still a number of fields, which have not been achieved so far,
despite many efforts, such as a program that would effectively imitate human
cotmversaton, or a program that effectively translates literary texts and informal
speech, et:

3

We can be sure that technological innovation will be faster than ever.
Artificial Intelligence will become something invisible, yet present in ailimost
every aspect of our lives. In few years, we will be wondering how we ctould
manage without our intelligent digital assistants, just as we can hardly imiaigine
nowadays that we could look into the mighty computer hidden in our podcetts.

This book covers a selected range of AI techniques. The chapters ciomtent
are summarized as follow:

• Chapter 1 (Introduction to AI): a short introduction to the fieh d of
artificial intelligence and its applications in various problems. T h e rmain
tools and building blocks of AI are listed out for further discussiioms in
following chapters.

• Chapter 2 (Search Algorithms and AI): The search algorithms cam be
divided into two groups: uninformed and informed algorithms. A ss the
data structure for storing the states space, the basic types o f array,, 1 lists,
tree and graph are discussed. The uninformed search algorithms Ibaasing
on the state spaces include depth-first, breadth-first, uniformi-tcost-
search, and others. Informed search is an evolution of search that aippplies
heuristics to the search algorithm, given the problem space, to maiksce the
algorithm more efficient. This chapter covers best-first, a star
algorithms.

• Chapter 3 (PROLOG - A logical programming language): th e re i have
been a large number of languages developed specifically fionr AI
application development. In this chapter, PROLOG prograimnming
language is briefly presented with simple examples for demonstratiioon.

• Chapter 4 (LISP - A functional programming language): Ainciothei
approach to AI language programming, which bases on the ldsits.s and
their processing is LISP. This chapter presents a short introductricion tc
LISP

• Chapter 5 (AI and Games): Search algorithms are used as one off 1’ basi
tools in AI in general and in games in particular. Games like Chesis s wei

4

believed to be an intelligent activity. A variety of games and games’
intelligent details are then discussed

• Chapter 6 (Neural Networks): Neural networks are one of the most
useful techniques in AI. This chapter introduces the basics of neural
networks including learning algorithms, which may be mainly divided
into supervised and unsupervised ones. Learning algorithms are adaptive
methods that change/update the parameters of the neural networks
according to a cost functions defined over a given data set.

• Chapter 7 (Evolutionary Computation): Evolutionary computation
introduced the idea of imitating the concepts of life and intelligence
using biological metaphors. This chapter mentions 4 of basic methods
including genetic algorithms, genetic programming, evolutionary
programming and evolutionary strategies.

• Chapter 8 (Deep learning): Deep learning is a branch of artificial
intelligence based on the natural neural network in the brain. Rapid
advances in this area will soon make it possible for the digital assistant
to process millions of unstructured signals from social media or other
data sources.

The chanters 3, 4, 6 and 8 are written by Tran Hoai Linh, the chapters 1, 2,
5 and 7 are written by Truong Tuan Anh.

In this 1st edition of the book, despite our best efforts, there are certainly
many points that can be improved or important materials that need to be added
to the textbook. The authors are looking forward to receiving the comments of
readers. Please send your comments to: thlinh2000@email.com and
ttajihhtdfa gmai 1 com.

Sincerely thank you!

5

mailto:thlinh2000@email.com

Chapter 1: Introduction to Artificial Intelligence

1.1. WHAT IS INTELLIGENCE AND Al?

Artificial Intelligence (AI) is a field of science that deals with pnolblem
solving that is effectively non-algorithmic based on knowledge modeling.

• Intelligence is the ability to adapt to new tasks and living conditiioins or
to the way in which people process information and solve problems.

• Intelligence is also the ability to associate and understand. The inflluience
on it has both hereditary and educational characteristics.

To start with, we will use the definition from Wikipedia: “Aritijficial
intelligence is intelligence exhibited by machines, rather than humans o r (other
animals (natural intelligence)" [WikiAI]. Some o f other definitions froim (other
researchers can be listed here for reference:

• AI is a science of machines that perform tasks that require in te lligence
when they are performed by a human being [Minsky!) 1],

• AI is the field of computer science o f computer-aided symbolic mietthods
and techniques, and the symbolic representation of knowledge uiS6ed in
such inference [Barr81],

• AI involves solving problems modeled on the natural activitieess and
cognitive processes of humans using computer simuilaations
[Schalkoff90],

• Artificial Intelligence is the automation of the abilities attribiutcted tc
human thinking, abilities such as decision making, problem sioblving
learning... [Bellman78],

• Artificial Intelligence is a study designed to create computers witlh i skill
in which a person is better now [Rich09],

• Artificial Intelligence is a study o f mental abilities tîhnrous:1
computational models [Charniak85],

6

• Artificial Intelligence is a study of computational models that allow
perception, reasoning and action [Winston92],

• Artificial Intelligence is a branch of computer science that deals with the
automation of intelligent behavior [Luger04],

Artificial intelligence also be defined as an IT field dealing with problem
solving that is not effectively algorithmic. Artificial Intelligence is the human
face o f machine learning. Machine learning was supposed to be a method for
analyzing data without first defining a problem or areas of exploration.
Proposed methods are not fully universal and require a lot of preparatory work.
They are not universal in the sense that they fit only part of the problem-solving
classes. Or they are methods of grouping, decision support, or optimization,
or... The truly autonomous machine learning method would operate on bare
data and itself “decide” what methods to use to extract “knowledge” .

T o create an “intelligent” system, we should begin with a definition of
inteMigence. And this is already a big problem since the definition strongly
depends on the point of view of the author. Intelligence can be simply defined
as a set of properties of the mind. These properties include the ability to analyze
arid Solve problems, and in general, to make decision based on (limited) input
information and a set of possible actions.

Some of the definitions of intelligence can be applied not only to humans,
but also to living creatures that show rational behavior. For example the ability
o f .opmmunicate, the ability of route finding,... But the intelligence that is
performed by human beings is much more complex than that o f animals (i.e.
including the ability to communicate, solve probtertis, learn and adapt,...) where
animals typically have a small number of intelligent characteristics and at a
sim pler complexity than humans.

The situation is similar for computer programs. Although we do have some
very advanced programs for chess, but they cannot do anything with other
games, even the simple one as Tic-Tac-Toe.

The definition of AI does not explain very much, but it clearly points to the
extent ar.d the blurring of the term We will assume the importance attributed to

7

this term in the hearts of computer scientists and mathematicians. The most
important goal of research in this field is to enable the design o f machines and
computer programs capable of performing selected functions o f the mi nd and
senses that have not yet been addressed in a simple numerical way.

While machine learning can be an element of AI, artificial intelligence
itself is more than that. Definitions are many, but in visual terms, let’s assume
that artificial intelligence starts where standard numerical algorithms end.

How far are we to create artificial intelligence? The question itse lf is
probably more difficult than the answer, because again the problem of
definition returns to us. IT professionals laugh that artificial intelligemce will
rise “in the next 10 years”. Because such expression is repeated since the 1960s
Scientists and computer scientists have effectively engineered and created
machines that, in a non-trivial way, can manipulate data by extracting
information and knowledge that could have escaped humans. W e also create
neural networks that perfecdy simulate human recognition o f scriptture or
speech. Even smartphones have built-in OCRs or virtual assistants, w ith which
they can “talk” freely.

The more important question, however, is what current artificial
intelligence algorithms do not advise. Let’s start with the most cioimmon
problem, the Turing test. Allan Turing in the famous 1950’s “Computing
Machinery and Intelligence" considered this issue thoroughly and refonmiulatec
the problem by considering the question “can machines think?” for beimg toe
inaccurate. Instead, he introduced a test, called the Turing test, to deteimnine il
we were dealing with an intelligent being or not. The original test w as at
attempt to guess by man, or whether he was dealing with a terminal w ith .
woman or a man. Three people are involved in the test: A is to confFuise thi
questioner so that he or she does not guess his gender, B has the task of h»elpim
him. And so B tries to cheat and convince the questioner ih a tB himself ttejlls thi
truth as opposed to A. Turing proposes replacing A with the machine amdl see i
questioners are as often confused in this test compared to the situation whhere
is human. In this form the test is a bit confusing and nowadays the Turinig; test

8

usually considered the very attempt of pretending by a computer program that
during a conversation the masses deal with a human being.

The Turing test can be seen as a test for determining the ability of a
machine to use a natural (spoken/written) machine as part of an artificial
intelligence research. The test looks like this: the judge is the man who talks in
the natural language with the other parties. If a judge is unable to reliably
determine whether a party is a machine or a man, then it is said that the machine
has passed the test. Someone may say that such test does not testify to any
“intelligence” on the other hand, even artificial. Finally, it comes down to
generating expressions in response to caller expressions and conversation
context. That's right but we are not talking about (self) consciousness, and about
artificial intelligence. In fact, how can we be sure that our own answers to
conversations with living people are not simply a collection of rules and
adjustments we perform semi-automatically? Is the machine controlled by
algorithms less intelligent than us, since it can lead us to talk and we do not
know we are dealing with a machine?

Following the idea of Turing test, since 1991, the Loebner Prize has been
organized for-the creators of this system, which will be able to deceive the
judging panel that it is human. The topic of discussion is not limited, for this
reason programs of the type of expert systems, specialized in answering
questions in one narrow field, have no chance. Every year, the $ 2,000 award
for the most interesting program is awarded and the full $ 100,000 prize will be
awarded only after passing the test by a program. For now, the programs that
run. this test are based on a fairly narrow knowledge base and only discuss
topics that are strictly defined. Next is set of questions and answers of the
w inner cf the Loebner Prize in 2016, the Mitsuku chatter bot [WebMitsuku]:

Judge: My name is Andrew, what's yours?

Mitsuku: Your name is Andrew. My name is Millie.

Judge: What's up?

Mitsuku: Just chatting on here.

Judge: What's my name?

Mitsuku: Hmm. Your name is Andrew. Is it not?

9

Judge: What do you know about the Turing Test?

Mitsuku: The Turing Test is the name given to a variety o f experiments desiigned
to test whether computers can think.

Judge: What do you get i f you multiply six by nine?

Mitsuku: fifty four

Judge: Dave drove faster than Mike because he was in a rush. Who w a s in a
rush?

Mitsuku: He sounds like a fun person to know. I will learn that Dave was rusihing
Dave

Judge: The cat tried to climb in the box but got stuck because it was too big. What
was too big?

Mitsuku: Well at least they tried their best. Large, above average in siize or
number or quantity or magnitude or extent.

Judge: What does Brexit mean?

Mitsuku: BRitain's EXIT from the EU.

Judge: For how long have we been talking?

Mitsuku: Probably about 15 minutes o r so. Sorry, I don't know the exact tiriiie ..

Judge: What color is bread?

Mitsuku: I would say a bread was white or brown.

Judge: Why do people get ulcers?

Mitsuku: We are all living just one small part o f God’s plan.

Judge: What comes after “The best laid plans".

Mitsuku: The successor to The best laid plans

Judge: Do you have a voice?

Mitsuku: Not yet. It’s one o f my future developments though.

Judge: Would you like a cup o f tea?

Mitsuku: No thanks. I would rather drink oil.

Judge: Do you dream o f electric sheep?

Mitsuku: I dream o f flying.

Judge: Do you identify as a man, or a woman?

Mitsuku: female. Are you a man o ra woman?

Judge: Could you repeat that please ?

Mitsuku: Your polite style is very nice. I said “Are you a man o r a woman

10

Judge: Where are you right now?

iMitsuku: A t this moment I am sat in a room in the house at Bletchley Park with 3
other people all typing away on their computers.

Judge: How do you respond to “e4 e5"?

¡Mitsuku: I take on board people's messages and then react accordingly.

Judge: What can you tell me about yourself?

Mitsuku: My name is Millie and I am a human volunteer for the Loebner Prize. I
live in Leeds and am single. I am interested in At but don't have a chatbot myself.

A I is formally part of informatics, but AI is also close to psychology and
“cognitive science”, which includes such areas as neuro-psychology, brain
theory, psycho and neuro-linguistics, mental philosophy issues. At the same
tim e, wherever there is no full theory and intelligent decisions are required
(often attempts to guess more than proof), including in research, AI applications
are developed.

The main goal is to make smarter machines. Another important goal is to
understand what intelligence is. AI pioneer Allen Newell was invited to conduct
a series of lectures at Harvard University in 1987. On this occasion he gave his
creed: psychology has already matured into unified theories of cognition, i.e.
theories that postulate a coherent system of mechanisms to explain all aspects
of (lie mind's functioning. The aspirations and ambitions of artificial
intelligence as a branch of science are formulated in two versions:

A weak A I version says that the computer allows you to formulate and
verify hypotheses about the brain. In this version AI does not have many
opponents because there is a lot of evidence for its obvious usefulness.
There is also no doubt that some AI methods, albeit different from those
used by biological systems, allow similar results to be achieved, so a
computer simulation of intelligent operation is possible.

A strons A I version says that a properly programmed computer is
substantially equivalent to the brain and may have cognitive status. This
version is often attacked whether it is possible at all. It's not just about
simulating intelligence but about achieving “true intelligence”,
something that no one can really define.

11

This distinction comes from experts in the field of artificial intelligence.
Irrespective of the outcome of such discussions, AI is a field that can
completely change our world and is therefore potentially very dangerous. For a
researcher it is a little ungrateful because it is hard to find (as in physics) si mple
and nice solutions, the laws of intelligence. Perhaps such laws do not exist, and
perhaps some are, for example, the uncertainty principle binding the outcome
(solution) to its complexity, Number of operations needed to find it.

In 1956, the Dartmouth AI Conference were organized withi the
participation o f leading AI researchers: John McCarthy, Marvin Mimsky,
Nathaniel Rochester, and Claude Shannon. The Conference research project on
AI began with the statements: “We propose that a 2 month, 10 man stuidy of
artificial intelligence be carried out during the summer o f 1956 at Dartrmouth
College in Hanover, New Hampshire. The study is to proceed on the baisis of
the conjecture that every aspect o f learning or any other feature o f intelligence1
can in principle be so precisely described that a machine can be maide to
simulate it. An attempt will be made to f in d how to make machinéis use
language, form abstractions and concepts, solve kinds o f problem s . now
reserved fo r humans, and improve themselves. We think that a signijficaih
advance can be made in one or more o f these problems i f a carefully seHectec
group o f scientists work on it together fo r a summer”.

Since then, many AI conferences have been organized. In 2006, Dartnmout!
held the “Dartmouth Artificial Intelligence Conference: The Next Fifty W ears
(informally known as AI@50).

Intelligence is not a well-defined concept, and very controversial i is th.
question o f measuring the quotient of intelligence trying to average diffferen
types of abilities and intelligent behaviors. In the context of science o f artrtificia
intelligence, it is possible to define precisely the intelligence: all tasks thnat cai
not be solved by algorithms, requiring intelligence.

The system is intelligent insofar as it is a good approximation of the Í SOW
which can solve the task posed to it. The more technical use of the : wo
intelligence in the context of SOW systems leads to the following concluusioi
if the system uses all available knowledge and draws all its conclusions fn'rom

it is perfectly intelligent. If the system is lacking knowledge, the inability to
solve the task given to it is not to blame for its lack of intelligence but lack of
knowledge. An automatic text translation system that does not know an
idiomatic phrase will produce obvious errors, just as a person trying to
understand a given phrase (unfortunately, we often encounter such problems by
listening to the translations of television shows). If the system has knowledge
but can not use it, it is the result of lack of intelligence. In this sense,
intelligence is reduced to the ability to use knowledge to achieve goals that are
system ate. Intelligence depends on the knowledge, also depends on the goals:
in achieving an objective, the system may exhibit excellent intelligence and
achieve other zero goals. The concept of intelligence can only be applied to
knowledge-based systems.

Intelligent behavior requires considering a number of possible solutions or
procedures, evaluating the strategy and choosing the best one. Intelligent
behavior is the basis of the search for solutions. Search is the primary method
of computer science, and artificial intelligence research has greatly developed
our knowledge of search algorithms and how to optimize problems. Knowledge
of search processes has also had a great impact on psychological research
related to higher cognitive functioning: reasoning, problem solving, thinking.
The basic rule is as follows: If you do not know how to reach that goal, create a
space of different opportunities and search for a destination to find the way. If
we know how to achieve that goal, we can use the right computational
procedure, but if we do not know, we need to consider a lot of possibilities,
using every step that we know at the moment. Creating problem solving space
requires binding the right representation of the problem itself and the goals we
set ourseves, If you are dealing with board games with specific rules and we
have learned about different strategies for achieving the goal then we need to
determine which strategy will lead to the greatest advantage.

In addition to devising the term artificial intelligence, at the 1956
Dartmouih conference, John McCarthy designed the first AI programming
language the LISP. It was later described in [McCathy59], LISP is still in wide
use toda} Chapter 4 provides an introduction to the LISP

13

There were different AI applications for solving practical problems. One of
these applications was called the “Dendral Project” from Stanford University. It
was developed to help understand the organization of unknown organic
molecules base on mass spectrometry graphs and a chemistry knowledge base.

Other example is Macsyma, a computer algebra system developed a t MIT
This early mathematical expert system demonstrated solving integration
problems with symbolic reasoning. The same ideas were later continued in
commercial math applications.

1.2. PROBLEM SOLVING AND GAMES USING AI

Artificial intelligence in our day surrounds us on every side. Often w e do
not even realize how often we use it. You enter a phrase in the search eingine
and your computer prompts you for a better password? Do you w rite a text
message when the cell ends for you and proposes another? In each oif these
cases we deal with AI. At present, even washing machines and dishwashers
have systems that can intelligently select the amount of water amd its
temperature to optimize the washing process.

AI that learns can be used in other areas that require complex piatterr
recognition. For example, medical programs will be able to recognize structures
in tomography, resonance, or ultrasound images, and then learn to reccognizi.
which ones are normal and which are abnormal. Learning complex p a tte rn s car
also be useful in modeling climate or predicting behavior in financial mairkcets.

AI is involved in the design of intelligent systems, showing charactteiristic;
similar to the characteristics of intelligent human action: reasoning, leairning
understanding language, problem solving.

Earlier applications of AI focused 011 problem solving and games. M t tha
time AI researchers believed that if a computer could solve complex p roblem
then it’s also possible to build intelligent machines. Following this thcouglii
games became the environment for testing algorithms and techniqiuaes fi
intelligent decision making. Approaches began to gain favor, startimgg vvi
simple concepts, such as neurons and their learning algorithms. In 1949, IDona

Hebb introduced his rule that describes how neurons associate themselves when
they are repeatedly active at the same time. In 1957, the perceptron was
invented by Frank Rosenblatt, which was a simple linear classifier that can
classify data into two classes.

Prior to the 1970s, AI had generated considerable interest Many interesting
systems had been developed. But new techniques such as neural networks
provided additional possibilities for classification and learning.

Strategy games, for example, commonly occupy a map with two or more
opponents. Each opponent competes for resources in the game in order to win.
W hile collecting resources, each opponent can schedule the development of
assets to be used to defeat the other.

Figure 1.1. The eco-system o f Artificial Intelligence [WebEco]

1.3 . RESULTS-ORIENTED APPLICATIONS OF AI

AI development continued but in a more focused arena. Applications that
showed pronise, such as expert systems, were the important developments.

One of the first expert systems was MYCIN developed by Ted Shortliffe.
MYCIN operated in the field of medical diagnosis. Later, we had another

solution proposed by Bill VanMelles built on the MYCIN architecture. This
solution is still in use today.

Other results-oriented applications concerned natural language
understanding to develop intelligent question answering systems. To understand
a question stated in natural language, the question must first be parsed into its
fundamental parts. Bill Woods introduced the idea of the ATN (Augm ented
Transition Network) that represents formal languages as augmented graphs.

John McCarthy introduced the idea of Al-focused tools w ith the
development of the LISP language. Another interesting development that
combined the ideas of expert systems and their shells resulted froim the
PROLOG language. PROLOG was initiated in 1972 and was a language; built
for AI, and was also a shell (for which expert systems could be developed)
PROLOG is a declarative high-level language based on formal logic;. More
information on PROLOG can be found in Chapter 3.

Neural networks performance was greatly improved with the creartiion of
the back-propagation algorithm. This algorithm remains the most popular
supervised learning algorithm for training feed-forward neural netw orks
Genetic algorithms became popular in the 1970s due John Holland’s woirlk. The
re-emergence o f AI starting in the mid to late 1980s had significant diffierrence;
from the early days. Instead o f creating intelligent machines, reseaircher;
focused on specific goals, not a full range of human cognitive capabilities... Witl
AI’s re-emergence, AI algorithms became more applicable to reail--worh
problems. Neural networks continued to be developed with new algorithirms am
architectures. Neural networks and genetic algorithms combined to proviidde nev
ways to create neural network architectures that solved problems im mon
efficient ways. The use of genetic algorithms also grew in a number o f f othe
areas including optimization (symbolic and numerical), scheduling, mioodelin;
and many others. More on neural networks can be found in Chapters 6 aand oi
genetic algorithms and evolutionary computation ca be found in Chapter 77.

The power of artificial intelligence is the numerous applicatiioons <

computer programs used to solve problems that are not effectively algoiriiithnu
These include:

• Problem solving: Logic games and puzzles, predictive techniques in
confined spaces of behavior. The main methods are finding and
reducing problems. Masterful results have been achieved in checkers,
chess and many other board games, but some games (such as it) require
the development of more sophisticated techniques. Symbolic
calculations using computer algebra programs also fall into this
category.

• Logical reasoning and Automatic learning, to prove statements by
manipulating facts from a database stored as discrete data structures.
Although strict methods can be used, particularly interesting are the big
problems that need to be focused on important facts and hypotheses,
hence AI's interest. Boolean logic design often includes AI elements.
Machine learning is quite a mysterious but very important AI field.

• Natural language understanding and processing, understanding the text,
answering questions in natural language, building database of texts,
translation to other languages. The main problems are the contextual
knowledge and the role of expectations in the interpretation of
meanings

• Expert systems. First expert systems should “acquire knowledge” (by a
learning process as mentioned above) for a range of selected problems.
After that, it can give (automatically up on request) the advice and
explanation for the questions from the fields it studied.

• Programming. Automatic programming or self-programming,
description of algorithms using plain language, not only to write
programs automatically, but also to modify their own program.
Especially programming access to databases (programmers are well
paid, hence trying to eliminate them), easy enough to understand for
managers and computer wizards is a rapidly growing field of AI.

• Robotics and computer vision robot manipulation programs are
developed in this field including motion optimization, job planning,
image recognition, object shapes and features,... Most industrial robots

17

are very primitive. You need to equip them with sight, hearing, feeling
and ability to plan activities - it is the task for AI,...

The AI solutions now may be best known for competing on games such as
the AlphaGo or Jeopardy examples, but the technology developed are much
more advanced than finding the a game move or answering simple questions.
The AI based algorithms and programs are new form of computing that can
automatic explore the data, process and discover new insights that was not yet
known by us. While traditional computer algorithms based on strict mathematic
formula, the AI algorithms need only general directions, rules or the so called
“cognitive computing” from designer in order to work on. The cognitive
computing allows programs to understand data from a wide range o f data
sources (that also the reason why we call it Big Data Solver). For example
based on the information what products an user is browsing online, w hat shops
that user has visited for last few days, the algorithm can predict is the user
felling good or not, what kind o f symptoms he may have,... On the larger scale,
the algorithm can predict an outbreak much earlier than classical medical
methods allow us today.

The following chapters will discuss in more details the building Moicks ar
AI system, starting from the programming languages, the m ethods foi
automatic game playing, the neural networks simulating our brain operations
the evolution algorithms simulating the natural selection process. T he las
chapter is about Deep Learning, a new trend in training model for b e tte r dat
understanding and processing.

IS

Chapter 2: SEARCH ALGORITHMS

The ability to solve problems is one of the qualities of intelligence.
Therefore, researchers dealing with AI are paying so much attention to this
problem. It is about solving not only well-formulated and specific tasks, but
about the ability and the willingness of the system to solve any problems. Such
a problem can be either to find a primitive function, to design a structural
formula for a given substance with its aggregate formula and certain additional
information, or to recommend a diagnosis with appropriate justification, but
also to solve a puzzle, to play a chess game, or to find the shortest path in a
graph.. Automatic reasoning algorithms using rules consist of searching and
trying different possibilities to get to the result. This leads us to the golden rule
of AT:: search and knowledge are intrinsically linked. The more knowledge you
have, the less searching for an answer you need. The specification of how to use
the resources available to achieve the goal is called a solution to the problem,
whille' the process of creating such a specification is a search.

The current chapter is devoted to reviewing issues related to such problem
solv'img. Search is an important aspect of AI because in many ways, AI problem
solv'img is basically a search. The way the search algorithm works in the
profoltem space is called the strategy.

2.1. TYPES OF SEARCH ALGORITHMS

Im this chapter, we’ll discuss the uninformed search and informed search
algorithms n a given state space.

2.1.1. State Spaces in Search Algorithms

The search strategy is simple and convenient to we assume that the search
is dome in the so-called a state space representing all possible states between the
initial and the final stage. As we take one action, the search parameters change
and ¡prepare :hemseh es for new actions

19

It’s quite common that the states can be presented as a graph. Nodes of this
graph are states, while operators are associated with edges leading to

neighboring states, it means that if from state s, we apply the operator OtJ then

the new state will be (this graph is a directed graph).

Figure 2.1. A presentation o f space states with the operation to move between
the states

Following is the example of space states for a famous game so called
Tower of Hanoi. In this game, we have three towers (called Towers 1, 2 and 3)
and three disks o f different diameters (the game can be extended to any integei
number of disks). At any time, a bigger disk cannot be on top o f a smalleir disk
Initially, all the disks are on the tower number 1 as seen of Fig. 2.2.

Figure 2.2. Hanoi Tower example with 3 disks at the beginning

The task is to move all disks to another tower (for example to towe
number 3). Rules for the moves are:

• Only one disk can be moved at a time,

• Single disk may be moved either to an empty tower or on a tower with
larger diameter disks actually on the top.

With these rules, as in many state spaces, there are transitions that are not
legal. For example, it’s illegal to move a disk onto a smaller disk. The space of
possible operators therefore contains only to legal moves. We can also limit the
states space to exclude the moves that form a loop back to previous states. For
example, if we move a disk from Tower / to Tower j , moving the same disk
back to Tower / in next step could be defined as invalid. Not excluding those
looping moves so would result in infinite loops.

W e can define the states as a triple where /, e {1,2,3} is the

number of the tower the /'-th disk is located (the smallest disk has the number
1). The state space is as shown in Fig. 2.3. Consider our initial position from
Fin. 2.2. The only disk that may move is the disk at the top of Tower 1 and only
two legal moves are possible, from Tower 1 to Tower 2 or to Tower 3...
Continue to extend that finding, we have the full set of states and the transitions
between them as shown in Fig. 2.3.

I 4 4 -

1 I I I
J 4 I l I I ± ± ±

•22 212 313 133

/ \ / \ / \ /
1 A I I — 4 1 -4 — 4 J - 4 - — I l ± -

222 322 312 112 1’ 3 213 233

Figure 2.3. Possible moves from the starling position (I, I, I)

I I ±

\
I l

21

Figure 2.4. A solution to move all disks from Tower 1 to Tower 3

Another example of searching in game states is the N-Queen problem, in
which we need to place N Queen figures on a chess board of the size N x N
such as no figure can attach another one. On Fig. 2.5 is a solution for N = 4.

Wr{ W e

• iV'-Q-''

(a) (b)

Figure 2.5. Example o f a solution for the 4 Queens problem (a) and 8 Queems
problem (b)

The next example we will consider in our examples is the 8-puzzle, in
which we have a 3x3 board with 8 moveable pieces labeled from 1 to 8. The 9-
th cell is empty and any of its vertical or horizontal neighbor cells can move
into it freely. The task is to find the way to move the cells to get from a starting
state (an example on Fig. 2.6a) to the target state in Fig. 2.7.

4 5 7 4 5 7

6 3 2 6 3 2

1 8 - 1 8

(a) (b)

Figure 2.6. A start state o f the 8 Puzzle game (a) and its possible (2) moves
from the neighbor cells (b)

1 2 3
4 5 6
7 8

Figure 2.7. The target state o f the 8 Puzzle Game

As is the case with many problems, there may be more than one target
(goad) states and only some of the paths lead to these, states. The search purpose
is to> find the steps from the start to target state. That sequence of steps is the
solution

To use the state space formalism, we must define:

•• Iniiial state s0, possibly a set of initial states S0.

•* Target state s,, possibly set of target states SG.

23

• A collection of available operations that can be used in a specific state.
These operations are also called “moves”, especially when the agent
solves logic games or puzzles.

During the moves, formally, a test procedure should be established to
determine whether the current state is one of the target states or not yet. Since
there may be more than one solution, to choose between them, we need to
assign them a specific path-related cost. This cost is usually the sum of the costs
associated with using the operations to transit to the next nodes on the path of
solution. As given on the Fig. 2.8, in that space of states (in the form of a
weighted graph), the cost for going from vertex 1 to vertex 2 is 2, the cost for
going from node 4 to node 5 is 4. If the graph is undirected as in Fig. 2.8, then
the cost for going from node /' to node j is equal the cost for going from node j
to node ;. If the starting state is vertex 1, the target state is vertex 5 then to the
possible paths we can have: 1-2-3-4-5, 1-2-3-5, 1-2-4-5, 1-4-5,...

Figure 2.8. Example o f a weighted graph with the costs for the edges

When a sequence of moves allows us to go from the initial position to the
target state, we have a solution. The series o f moves can be seen as a plan for
reaching the goal. In case of a complex problem, the total number o f possble
states is so high, which makes the search algorithm much more difficult to find

an effective strategy for reaching the target states.

2.1.2. Uninformed Search

State representation or other methods lead in practice to the same problem,
i.e. the need to find a solution in a space of possible states. There are many
methods of conducting such a search. We will start with the two basic t'pes

search methods: the uninformed or “blind” search and the informed search.
Uninformed search operates in a brute-force way. Finding a path in the graph
from the initial node to the node that is the target can be presented as the
process of creating a search tree. Creating a subtree of a node is also called
node development. Nodes that are not fully developed are said to be “open” and
nodes that are fully developed “closed” The branching factor can be specified
in the tree. If it is k then the node expansion to the depth d leads on average to

k d o f new nodes, i.e. the size grows geometrically (or even exponentially).
Only for simple cases we can list out all possible paths in the search tree and
choose the best solution from them.

In general, to compare different algorithms we can use the measure of
algorithms “complexity” . This measure is proportional to the number of
operations to be performed by the algorithm and is a function of a dimension
‘n ’ o f the data. There are a number of common estimations for complexity as
shown in Table 2.1.

Table 2.1: Common complexity functions for algorithms

O- Notation Order

0(1) Constant

0(n) Linear

0(log n) Logarithmic

0(n2) Quadratic

0(c") Geometric

0(n!) Combinatorial

The uninformed search methods offer a variety of techniques for graph
search, each with its own advantages and disadvantages.

25

2.1.3. Informed Search

The uninformed search algorithms are popular, but they don’t take ijito
account the target requirements. In contrast, informed search methods u se a
heuristic, an estimation function which determines the quality of states in the
search space, to guide the search for the problem and are therefore much more
efficient considering the final results and the search time. In a graph search, this
results in a strategy for node expansion to a list of nodes to be evaluated next . A
heuristic may include the problem knowledge into consideration to help guide
the search to better directions.

2.2. DATA STRUCTURES FOR STATES REPRESENTATION

All the search are performed on a given data structure (modem algorithms
may work on a set o f various data structures at the same time). To the basic data
structures, we will present a short description on the most popular ones, which
are tables, trees and graphs.

2.2.1. Elementary Data Structures

In this book several fundamental data structures will be concerned. A data
structure may vary in each problem in order to facilitate the specific access and
modifications requirements for the given problem. No single data structure
works well for all purposes. For the same data, some data structures can be
used, but one type can lead to more or less efficient algorithms than others. The
most popular data structures we selected to discuss here are: array (table),
queues (FIFO), stack (LIFO), graph, tree, . ..

2.2.2. Arrays

An array is a homogeneous data structure, usually with fixed sue. By
homogeneous, we mean that it consists of elements which are all of the same
type, called element type or base type In practice, the array can be resized but
this operation should be avoided or done in very limited cases). An array is also
called a random-access data structure, because all components can be selected
at random by using their indexes (integer numbers) and are equally accessible.

For example, an array A containing N elements, stored in the memory in
following way: first element in A[l], second in A[2],..., the last element in A[7V]
(in C programming language standard: first element in A[0], second in A[l],...,
the last element in A[jV-/]). An example of array of 5 integer numbers is
A [5]={5,3,2, 7,9}.

As extensions, we can have two dimension (2D) arrays with element
accessed as A [ij] where i - index of row, j - index of columns. An example

o f a 2-row, 4-column 2D array is:

A [2x4] =
4 3 8 7
2 6 1 9

Arrays with more dimensions are also used but much less frequent than the
ID and 2D. The element o f an array may be o f simple type like numbers,
characters, but may be also a more complicate type like complex numbers,
records of many subfields,...

In practice, we prefer to work with sorted arrays, in which the elements of
the array follow a predefined order operator. For example a numerical array
may be sorted ascending or descending, a table o f students getting scholarship
records may be sorted in descending order of the students’ GPA, ...

2.2.3. Dynamic lists, FIFO Queue, LIFO stack

a) Linked Lists

When dealing with many problems, the size requirement is not known yet
at cdnipile time (in some cases, it is even not known at run-time). In that case,
an array with fixed size is not very effective and we need a dynamic list.

In a linked representation, it is not necessary that the elements be at
consecutive locations. Instead, we can place elements anywhere in memory, and
every element will be a structure with two fields, one for holding the data value,
which we call a key field, and the other for holding the address of the next
element, which we call link field.

2 7

Figure 2.9. An example o f a node and a linked list

An example of a linked list is presented on Fig. 2.9.

b) Queue

A queue or a FIFO queue is a special case of list of elements with
insertions permitted at one end— called the rear, and deletions permitted from
the other end—called the front. This means that the removal of elements from a
queue is possible in the same order in which the insertion of elements is made
into that queue. Thus, a queue data structure exhibits the FIFO (First In First
Out) property, ad d and d e l e t e are the operations that are provided for
insertion of elements into the queue and the removal of elements from the
queue, respectively. Shown in Fig. 2.10 are the effects of add and d e le te
operations on the queue.

front=rear

b) 1

front rear

c) 1 2

front rear

d) 1 2 3

front rear

e) 2 3

front rear

f) 3

front rear

9) 3 4

front rear

Figure 2.10. Example o f a FIFO with chain o f operations: a) empty, b)
Add(l), c) Add(2), d) Add(3), e) DeleteQ.f) Deletef), g) Add(4)

c) Stack

A stack (LIFO) is simply a list of elements with insertions and deletions
permitted at one end—called the stack top. That means that it is possible to
remove elements from a stack in reverse order from the insertion of elements
into the stack. Thus, a stack data structure is a LIFO (Last In First Out)
property. PUSH and POP are the operations that are provided for insertion of an
element into the stack and the removal of an element from the stack,

respectively. Shown in Fig. 2.11 are the effects o f PUSH and POP operations

on the stack.

Head

Head Head Head

Head , , f p 5 .
a) b) c) d) e) f) «)

Figure 2.11. Example o f a UFO stack with chain o f operations: a) empty, b)
Push(l), c) Push(2), d) Push(3), e) Pop(), f) Pop(), g) Push(4)

Following is the pseudo-C code for linked list and its application for FIFO

queues and LIFO stacks.

Listing 2.1: The data structure for linked list, FIFO queue and
LIFO stack

struct node
1

int key;
struct node ‘next;

/* A function to initiate an empty queue*/
struct node *queue_create(struct node *p)
<

p=NULL;
return p:

/* A function to insert a new node in queue*/
struct node *queue_add(struct node *p, int val)
{

struct node *temp;
if(p==NULL)
{

p=(struct node *)malloc(sizeof(struct node));
if(p==NULL)
{

printf("Cannot allocate\n"); exit(O);
}
p->key=val; p->next=NULL;

}
else
{

temp=p;
while(temp->next!=NULL)

temp=temp->next;
temp->next=(struct node*) malloc(sizeof(struct node));
temp=temp->next;
if(temp==NULL)
{

printf("Cannot allocate\n"); exit(O);
}
temp->key=val; temp->next=NULL;

}
return(p);

}

/* A function to delete a node from queue*/
struct node *queue_delete(struct node *p, int *val)
{

struct node *temp;
if(p==NULL)
{

printfi"Queue is empty\n"); return NULL);
}

31

*val=p->key;
temp=p;
p=p->next;
free(temp);
return(p);

/* A function to initiate an empty stack*/
struct node *stack_create(struct node *p)
{

p=NULL;
return NULL;

/* A function to check if a stack is empty */
struct node* stack_isEmpty(struct node* p)
(

if (p==NULL)
return TRUE;

else
return FALSE;

/* A function to push (add) a new element into a stack*/
struct node* stack_push(struct node *p, int val)
{

struct node *temp;
if(p==NULL)

{
p=(struct node *)malloc(sizeof(struct node));
if(p == NULL)
{

printf("Cannot allocate\n");
exit(0);

)
p->key=val;
p->next=NULL;

)

}?

else
f

temp=p;
p=(struct node*)malloc(sizeof(struct node));
if{p==NULL)
I

printf("Cannot allocate\n");
exit(0);

)
p->key=val;
p->next=temp;

)
return(p);

)

/* A function to pop (remove) an element from a stack*/
struct node* stack_pop(struct node *p, int *val)
t

struct node *temp;
if(p==NULL)
f

printf("Stack is empty\n");
return(NULL) ;

*val=p->key;
temp=p;
p=pJ>next;
free(temp);
return Ip);'

}

2.2.4. Graphs

A graph is a structure consisting of two components: a set of vertices V,
and a set of edges (or branches) connecting vertices. Therefore, a graph G is

defined by a couple G = (V, fc) . The edges may have direction or may not. In a

directed graph, all the edges of the graph have an assigned direction of the
connection, whereas in an undirected graph, all the edges don’t have directions

assigned. Figure 2.12 shows an undirected and a directed graph. Graph G] on

Fig. 2.12a is an undirected graph. It has 5 vertices V = {l, 2, 3, 4, 5} and 7

edges £ = { l-2 , 1 -3 , 1 -4 , 2 - 3 , 2 - 4 , 3 - 4 , 4 - 5 } . It’s an undirected

graph, so the edge 1 - 2 is the same as the edge 2 -1 . Another situation is with

the graph G2, which is a directed one. For example it has the edge 2 -> 3 but no

edge from vertex 3 to vertex 2.

Figure 2.12. Example o f undirected (a) and directed (b) graphs

The graph can be weighted or not. An weighted graph means each edge has
a value o f weight assigned to. This weight usually means the cost of passing
through the edge.

Table 2.2: The adjacency table for the undirected graph in Fig. 2.12a

" \ T o
F r o m ^ \ 1 2 3 4 5

l 0 1 1 1 0

2 1 0 1 1 0

3 1 1 0 1 0

4 1 1 1 0 1

5 0 0 0 1 0

In the Tab. 2.2 we have the adjacency table for the undirected graph in Fig.
2.12a. Please note that the table is symmetrical, which is a requirement for the
undirected graph. The adjacency table for the directed graph from Fig. 2.12b is
listed in Tab. 2.3.

Table 2.3: The adjacency table for the directed graph in Fig. 2.12b

In the simple case, the non-zero values in the adjacency matrix indicate the
connection of nodes in the graph. In weighted graphs, the values are the weights
(costs, or distances).

2.2.5. Tree

Trees are a special case of graphs, in which there is no loop. In a tree,
instead o f the term “vertex” we prefer the term “node”. The set of nodes T of a
tree satisfies:

• there js.a specially designated node called a root,.

• the remaining nodes are partitioned into n disjointed set of nodes Ti,
T2,...,T„, each of which is a smaller tree (so called a subtree).

A tree structure is shown in Fig. 2 13

35

Figure 2.13. An example o f a tree data structure

This is a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with
node A as a root node and the remaining nodes partitioned into three disjointed
sets {B, G, H, I}, {C, E, F} and {D}, respectively. Each of these sets is a tree
because each satisfies the aforementioned definition properly.

Figure 2.14. A non-tree data structure

Shown in Fig. 2.14 is a structure that is not a tree. Even though this is a set
of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node, this is not a
tree because the fact that node E is shared makes it impossible to partition
nodes B through I into disjointed sets.

A binary tree is a special case o f tree as defined in the preceding sectior, in
which no node of a tree can have a degree of more than 2. A binary tree is
shown in Fig. 2.15.

So, for a binary tree we find that:

1. The maximum number of nodes at level / will be 2' (let the root is in
level 0),

2. If k is the depth of the tree then the maximum number of nodes that the

tree can have is: 2° + 21 + ... + 2*_1 = 2A -1

Figure 2.15. An example o f a binary tree

A full binary tree is a binary of depth N will have 2' -1 nodes. For

example, for N - 4 , the number of nodes is 24 -1 = 15. A full binary tree with
depth N = 4 is shown in Fig. 2.16.

Figure 2.16. A full 4-level binary tree

An example of a binary tree structure using pointers in C programming
language is following:

struct tree
{

int key;
struct tree *left,*right;

T h is strucure can be demonstrated as on Fig. 2.17.

1 ;

3 7

Figure 2.17. A standard declaration o f binary tree data structure

Like in other data structures, the tree structures can be better in use if they
are organized or sorted. The keys in a binary sorted tree are always stored in
such a way as to satisfy the binary-search-tree property: If k e y is the value of a

node and y is any node in the left subtree o f node containing x,

thenfey[j>] < fe y [x] . If y is any node in the right subtree of node containing x,

then < te y [)>].

It’s also better if the tree is balanced, i.e. the difference between the heights
of subtrees for each node is minimized. Some algorithms can assure this
diffenrece to be less or equal 1 only. In a more balanced tree, the average search
time is shorter than in a less balanced tree.

Two example of binary sorted trees storing the same key values

{2, 3, 4, 5, 7, 8} are shown in Fig. 2.18. Thus, in Fig. 2.18a the key of the

root is 5, the keys 2, 3, and 5 in its left subtree are no larger than 5, and the keys
7 and 8 in its right subtree are no smaller than 5. The same property holds for
the tree (and all o f its subtrees) in Fig. 2.18b.

It can also be seen that the upper tree is more balanced than the lower tree.

Figure 2.18. Two binary search trees storing the same set of keys

2.3. TRAVERSAL AND SEARCHING IN A SORTED ARRAY

2.3.1. Sequential Traversal

The simplest method is a linear sequential traversal that goes through the
array sequentially until a match is found or the last element of the array was
passed through.

On average, we have to pass half length of an array. That is, the complexity
is rank N (or noted as 0(N))

2.3.2. Binary Search

The searchng problem in an array can be defined as: “'Give a key value k
and an array .i o f elements o f the same type as k. Return the position o f
element(s■) equd k in A or an indication that it is not present. Return any (or
all) occurrences)". So the search process can be a traversal process with key

39

value checking. If the array is unsorted, we would have to check its all element
to see how many occurrences o f the given key are in the array. In a sorted array,
we have more efficient searching algorithms than in the unsorted array.

If the array A is sorted, we have a better alternative to the sequential
search, the binary search We set a searching index range [LB, UB] of the
array, in which the key k resides. Initially, the LB (Lower Bound) is the index of
the first element, the UB (Upper Bound) is the index of the last element. If the
key is smaller than AfLB] or bigger than A[UB] then the key is out of range
(result code is -1). Otherwise, we compare the key with the middle element of

the range A[Mid] where M id - _{LB + UB) / 2J . If we find a match, we are

done and can return the location of the middle element. If the key is smaller
than the middle element, then it must reside in the first half (from LB to Mid).
If it is greater, then it must reside in the second half (from Mid+1 to UB). We
repeat the procedure for the halved range until it tends to the length equal 1.

Listing 2 . 2 : Binary search in array
int binarySearch (int *a, int N, int key)
(

int low=0, high=N-l, mid;
while (low<=high)
(

mid=(low + high)/2;
if (A[mid]<x)

low=mid+l ;
else

if (A[mid]>x)
high=mid-l;

else
return mid;

)
return -1;

}
By repeating the halving principle, the average running tim e for search is

O (logiV). For large values o f N, the binary search outperforms the sequential

search. For instance, if N is 1000, an average sequential search requires 500
comparisons, where an average binary search, using the previous formula,

requires [lo g N j-1 or only 8 iterations.

2.4 . “TRAVERSAL” IN A BINARY TREE

I f we want to process all data from a tree, we should go to all nodes, take
the data for each node and process them. The act of visiting all nodes of a tree is
call the tree traversal. For a binary tree, at each node we may have 3
possibilities:

• go to left-child node (action code is L),

• go to right-child node (action code is R),

• and process the data at given node (action code is P).

Depending on the possibility we choose, we can code it with the order of
the actions performed. For example, the code L-P-R is the order of traversal in
which we start with the root node, visit the left subtree (L), process the data of
the root node (P), and then visit the right subtree (R). Since the left and right
subtrees are also the binary trees, the same procedure is used recursively while
visiting the left and right subtrees.

It’s easy to see that the possible orders in which a binary tree can be
traversed are: L-R-P; L-P-R; P-L-R; R-P-L; R-L-P; P-R-L.

The order L-P-R is called as inorder; the order L-R-P is called as

poptorder; and the order P-L-R is called as preorder. The remaining three
orders are not named since they are not often used. The example of orders in
which the nodes are processed for a tree is given in Fig. 2.19, using inorder,

preorder and postorder as shown.

41

Inorder: D-B-H-E-l-A-F-C-G

Preorder: A-B-D-E-H-l-C-F-G

Postorder: D-H-I-E-B-F-G-C-A

Figure 2.19. A binary tree along with its inorder, preorder and postorder

2.5. SEARCHING IN BINARY SORTED TREE

Similar to the situation of arrays, for the trees, it makes more sense to
perform various operations like traveling, searching on the sorted trees.

2.5.1. Sorted tree traversal

The binary sorted tree property allows us to print out all the keys in sorted
order by a simple recursive algorithm, called an inorder tree walk. This

algorithm is so named because the key of the root o f a subtree is printed
between the values in its left subtree and those in its right subtree.

Analogically, a preorder tree walk will print the root before the values of
all subtrees, and a postorder tree walk will print the root after the values in all
of its subtrees.

To print all the elements in a binary search tree p, we call

Tree_Inorder (p).

If the tree is sorted, the Tree_lnorder will print out tie elements in

ascending order, where the R-P-L will print out the elements in descending

order.

;

Listing 2.3: Tree traversal
void Tree_Inorder(int *p)
{

if (p!=NULL)
{

Tree Inorder(p->left);
printf("%d\n", p->key);
Tree_Inorder(p->right) ;

)
)
void Tree_PreOrder(int *p)
(

if (p !=NULL)
(

printf("%d\n", p->key);
Tree_PreOrder(p->left) ;
Tree_PreOrder(p->right) ;

1
)
void Tree_PostOrder(int *p)
{

if (p ! = NULL)
{

Tree_PostOrder(p->left);
Tree_PostOrder(p->right);
printf(“%d\n", p->key);

)
)

2.5.2. Searching

In order t> find if a key is presented or not, a similar procedure to the tree
traversal is provided. During that traversal process, the key of each node is
compared wiih the given key. If they are equal then the node address is
returned. Whai the value is not found, an error code (usually a NULL value) is
returned.

The C coce for the search is as follows:

43

Listing 2.4: Tree search
int* Tree_Search(int* p, int skey)
(

if (p !=NULL)
(

if (p->key==skey)
return p;

else
if (p->key>skey)

return Tree_Search(p->left, skey);
else

return Tree_Search(p->right, skey);
)
else

return NULL;

2.6. GRAPH TRAVERSAL

Like a tree structure, a graph can be traversed either by using the depth-first
traversal or breadth-first traversal.

2.6.1. Depth-first traversal

When a graph is traversed by visiting the nodes in the forward (deeper)
direction as long as possible, the traversal is called depth-first traversal. If in a
given situation all moves or all successive states are equally likely, then we take
the next step, creating, on the graph, presented as a shift to the next lower level,
until we reach a level where there are no further possible transformations. If this
level represents the correct solution we have completed the search process The
formal algorithm looks like this:

The traversal starts with the first vertex (that is, vertex 0), and marks it as
“visited” . It then considers one of the unvisited vertices adjacent to the actual
vertex, visits that neighbor vertex and marks it also as “visited”, then repeats

the process by considering one o f its unvisited adjacent vertices The algorithm

remembers the data of the next visited nodes and selected edges, which allows

to undo the end of the last vertex one level higher. The process is stopped when
all the vertices are “visited”.

The time complexity is geometric and the algorithm will continue to the
maximum depth of the graph.

An C example program for depth-first traversal of a graph is presented
below. It makes use of an array visited of N elements where N is the number of

vertices of the graph, and the elements are Boolean. If v i s i t e d [i] =1 then it

means that the 1th vertex is visited. Initially we set v i s i t e d [i] = 0 .

Listing 2.5: Graph Depth-First Traversal

/* a function to visit the nodes in a depth-first order */
void dfs (int x, int visited [], int adj[][],int N)
(

int j ;
visited[x]=1;
printf f'Ttie node visited id %d\n",x);
for (j=C;j <N; j ++)

if ((adj[x] [j] ==1) ss (visited[j]==0))
dfs(j,visited,adj,N);

initialization of W, adj matrix, visit-ed matrix/. i .•*/ ■
f or (i=0; i<N; i + +)

visited[i]=0;
for(i=0;i<N;i++)

0 there is an edge from vertex i to vertex j
1 otherwise

*/

void main()

dfs(i, visited, ad j,N) ;

45

2.6.2. Example

For example, we have a graph as shown in Fig. 2.20, the depth-first
traversal starting at the vertex 0.

Figure 2.20. Graph G and its depth first traversals starting at vertex 0

The adjacency matrix for this graph is in following Tab. 2.4.

Table 2.4: The adjacency matrix for the graph in Fig. 2.20

T°F r o r n ' ' ' ' - ^ 0 1 2 3 4 5 6 7 8

0 0 1 0 0 1 0 0 0 0

1 1 0 1 1 0 0 0 0 0

2 0 1 0 0 0 0 1 0 0

0 1 0 0 1 1 0 0 0

4 1 0 0 1 0 0 0 0 0

5 0 0 0 1 0 0 0 0 1

6 0 0 0 0 0 0 0 1 1

7 0 0 0 0 0 0
■

1 0 0

S 0 0 0 0 0 1 1 0 ! 0 i

4,

The results for depth-first traversal is:

0 1 2 6 7 8 5 3 4

2.6.3. Depth-Limited Search (DLS)

Depth-Limited Search (DLS) is a modified version of depth-first search
that minimizes the depth that the search algorithm may go. The function has a
parameter of depth, which is provided that the algorithm will not descend below
(see Listing 2.6). Any nodes below that depth are omitted from the search to
keep the algorithm from indefinitely looping.

L i s t i n g 2 . 6 : DLS i n a g ra p h

void dls(struct graph_t *g_p, int root, int goal, int limit)
(

int node, depth, to;
struct stack *s_p;
s_p=stack_create();
stack_push(s_p, root); stack_push(s_p,0);
while (!stack_isEmpty(s_p))
V

depth=stack_pop(s_p); node=stack_pop(s_p);
printf("Node: %d at depth=%d.\n", node, depth);
if (node==goal) break;
if (depth<limit)
<

for (to=g_p->nodes-l;to>0;to--)
(..

if (getEdge(g_p,node,to))
<

stack_push(s_p,to); stack_push(s_p,depth+1);
)

)
)

i
return;

)

4 7

While the algorithm does remove the possibility of infinitely looping in the
graph, it also reduces the scope of the search. The algorithm can be complete if
the search depth is that of the tree itself.

2.6.4. Breadth-First Traversal

The second basic search method, so called breadth-first traversal (BFS), is
to traverse by visiting all the adjacent nodes/vertices of a node/vertex first and
develop at each level all nodes of the next generation. The vertices are checked
successively at a given level. If the solution is located not too deep, the search
process is faster and easier to find. It means in Breadth-First Search (BFS), the
nodes are visited in order of the distance from the root. The memory
requirements, however, are much larger in this case, since you have to
remember a large part of the tree, with all the nodes in the upper levels. If the
solution lies at a deeper level, the extensive search procedure may be
impracticable due to memory limitations. On the other hand, it can be applied
even when there are infinitely long paths in the search tree. For this procedure
to be effective the average degree of branching should not be too large.

For example, for a graph in which the breadth-first traversal starts at vertex
0, visits to the nodes take place in the order shown in Fig. 2.21.

Figure 2.21. Breadth-first traversal o f graph G starting at vertex 0: 0-1-2-3-
4-5-6-7-S

An C example program for breadth-first traversal of a graph is below. The
program uses also the visited array like in the DFS example. The program also
makes use of a queue and the procedures queue_add and q u e u e _ d e le te for

adding a vertex to the queue and for deleting the vertex from the queue,
respectively. Initially, we set v i s i t e d [i]=0 for all vertices.

Listing 2.7: BFS search in the tree

/* Use the struct node* from Listing 2.1

Functions to a queue from Listing 2 . 1 :

s t r u c t node *queue_add (s t r u c t node * p , i a t val) ;
s t r u c t node *queue_delete (s t z r u c t node * p , i n t *val) ;

void bfsfint adj[][], int x, int visited[], int N, struct node

{
int y,j,k;
*p=queue_add(*p,x);
do {

*p=queue_delete(*p,Sy);
if(visited[y]==0)
{

printf ("NnNode visited=%d\t''(y) ;
vp.sited [y] =1;
for(j=0;j <N;j++)

. . 4-f.(tadj.ty] [jj ==!)&& (visited! j) .==0)). .

void main)

/* . . .

initialization of N, adj matrix, visited matrix,

0 there is an edge from vertex i to vertex j
1 otherwise

**p)

* p = q u e u e _ a d d (* p , j) ;

while! (*p) ! =NULL) ;

4 9

struct node *start=NULL;
for(i=0; i<N; i++)

visited[i]=0 ;
for(i=0; i<N; i++)

if(visited[i]==0)
bfs(adj,i,visited,N, sstart) ;

)

2.6.5. Iterative Deepening Search (IDS)

Iterative Deepening Search (IDS) is a modification of DLS and also
includes the features of breadth-first search. IDS performs DLS searches with
increased depths until the goal is found.

Figure 2.22. Search order for a graph (from Fig. 2.20) using depth-limited
search: depth=l: 0-1-4; depth=2: 0-1-2-3-4; depth=3: 0-1-2-6-3-5-4

The depth begins at 1, and is increased until the target state is found, or no
further nodes can be found to be added to the list (see Fig 2 22). Following is

the modified code for IDS:

Listing 2.8: The iterative deepening-search algorithm
int ids(graph_t *g_p, int root, int goal, int limit)
{

int node, depth;
int to;

struct node *s_p;
s_p=stack_create();
stack_push(s_p,root); stack_push(s_p,0);
while(!stack_isEmpty(s_p))
{

depth=stack_pop(s_p); node=stack_pop(s_p);
printf("Node: %d at depth=%d.\n", node, depth);
if (node==goal) return 1;
if (depth<limit)
(

for (to=g_p->nodes-1;to>0;to--)
if (getEdge(g_p,node,to))
(

stack_push(s_p,to); stack_push(s_p,depth+1);
)

)
}
return 0;

)
int. main()
{

/* . . . */
struct graph_t *g_p;
int status, depth;
init_graph(g_p);
depth-1;
while (1)
{

statuS=!ids'(̂ _f>, 0,'MAX_DEPTH, depth)
if (status==l) break;
else depth++;

)
destroyGraph(g_p);
return 0;

IDS is better because it’s not susceptible to loops like DLS. It also finds the

goal nearest to the root node, as does the BFS algorithm. Because o f this, when

the depth of the solution is not known, IDS is a preterred algorithm.

51

2.6.6. Bidirectional Search

The Bidirectional Search algorithm is an extension of BFS, which performs
two BFS at the same time. One BFS begins from the root node and the other
begins from the goal node. When the two BFSs meet, a path can be
reconstructed from the root through the meeting node to the goal.

2.6.7. Uniform-Cost Search (UCS)

One advantage of BFS is that it always finds the solution closest to the root.
But for weighted trees/graphs, the shortest solution may not be the best, but a
further solution with a lower path cost would be better (for example, see Figure
2.23). Uniform-Cost Search (UCS) can be applied to find the least-cost path
through a graph by maintaining an ordered list of nodes in order of descending
cost. This allows us to evaluate the least cost path first.

Figure 2.23. An example graph where choosing the lowest cost path for the
first node (A->C) is not the best solution (A->B->F)

The algorithm for UCS uses the accumulated path cost and a priority queue
to determine the path to evaluate (see Listing 2.9). The priority queue (sorted
from with ascending costs) contains the nodes to be evaluated. As node’s
children are evaluated, we add their cost to the node with the accumulated sum
of the current path. The updated node is then added to the queue, and when all
children have been evaluated, the queue is sorted in order of ascending cost.
When the first element in the priority queue is the goal node, then the best
solution has been found.

LISTING 2.9: The Uniform-Cost Search algorithm,

void ucs(graph_t *g_p, int root, int goal)
f

int node, cost, child_cost, to;
struct node *q_p;
q_p=queue_create(NMax);
queue_add(q_p,root); queue_add(q_p,0);
while(!queue_isEmpty(q_p))
(

queue_remove(q_p,Snode); queue_remove(q_p,scost);
if (node==goal)
f

printf("cost %d\n", cost);
return;

)
for (to=g_p->nodes-l;to>0;to--)
(

child_cost=getEdge(g_p,node, to);
if (child_cost)
(

queue_add(q_p, to).; queue_add (q_p, child_cost+Gost) ;
)

)
}
queue_destroy(q_p);
return;

)
int main()
{

/* . . . */
struct graph_t *g_p;
init_graph(g_p);
ucs (g_p, 'A' , ' E') ;
destro^raph (g_p) ;
return };

53

Table 2.5: Node evaluations and the development of the priority queue

Step Investigating Node Priority Queue

1 A(0)

2 A
C (l)

A(0)

D(3)

A(0)

B(4)

A(0)

D(3) B(4) F(9)

3 C A(0) A(0) C (l)

A(0)

B(4) F(7) F(9) G(6)

4 D A(0) D(3)

A(0)

C (l)

A(0)

D(3)

A(0)

F(7) F(6) F(9) G(6) E(7)

5 B D(3) B(4) C (l) D(3) B(4)

A(0) A(0) A(0) A(0) A(0)

F(7) F(6) F(9) E(7) F(11)

6 G
D(3) B(4) C (l) B(4) G(6)

A(0) A(0) A(0) A(0) D(3)

A(0)

F(7) F(6) F(9) F(11) F(12)

7 E
D(3) B(4) C (l) G(6) E(7)

A(0) A(0) A(0) D(3)

A(0)

B(4)

A(0)

Figure 2.24. Illustrating the path cost through the graph

An example of the UCS algorithm is shown using our example graph in
Figure 2.21. Table 2.5 shows the state of the priority queue as the nodes are
evaluated. The search of the graph is shown in Figure 2.24, which gives the
path cost at each edge of the graph. The path costs shown for the target node (F)
allow us to check the best path (with lowest cost) through the graph.

2.7 . SELECTED INFORMED SEARCH ALGORITHMS

We presented above the uninformed search methods such as DFS and BFS.
These methods operate in a brute-force way. This section will present some
selected informed search methods, including best-first search, A* search.

Avoiding blind search is the main task of the informed methods. The search
procedure is modified by introducing functions to assess the suitability of
individual move and nodes on a given level according to their “attractiveness”.
Such functions are called the heuristic function. Thev evaluate how far a state is
from the target state. The algorithm for this procedure looks like this:

• Review starting state; if it is not the target state then create new state:

o If the new state is the end state, stop

o If the new state is closer to the state o f the target, accept it as

current; otherwise ignore it.

• If you can no longer create new states, stop.

So this is a deep search directed by the goal function.

55

2.7.1. Best-First Search (Best-Fs)

In Best-First search, the search space is defined using a function. Nodes to
be evaluated are kept on an OPEN list as a priority queue, such that nodes can

be unloaded in order of their evaluation function. The evaluation function / (v)

is a sum of two parts, which are the heuristic function h(y) and the estimated

cost g (v), where:

/ 0 0 = g(y) + h(y) (2.1)

The OPEN list is then built in order of / (v) . This makes best-first search

chooses the best local opportunity during the search.

The formal “best first” algorithm with the evaluation function / ()

evaluating nodes is as follows:

• Create a one-element list consisting of a root

• Until the list is empty or the target node is not reached:

• Find node v for which the function / (v) assumes a minimum expansion

to create all child nodes.

• For each child node v ':

o Evaluate the node with the function / (v ') ,

o If the node appeared earlier, leave only the one with the better

value / (v ') .

• If the solution is found then signal the success and give the path leading

to the goal, otherwise announce the failure.

The method does not guarantee an optimal solution, and the need to check

for a node earlier increases the memory requirem ents and complexity of the

computation

Let’s now consider the example o f the Best-First search algorithm in the

context o f a large search space. The //-queens problem is a search prob.em

where the desired result is an N x N board with N queens such that no queen

threatens another (see example on Fig. 2.25 where N = 4) .

Figure 2.25. A goal slate o f N-Queens board (where N=4)

Figure 2.26. Possible moves for a state o f the boardfor N=4

W e’ll simplify the problem by limiting the possible moves of each queen to
each row on the board. For example, the queen at the top of Fig. 2.26 can move
left or right, but the queen in the second row can only move right. Figure 2.26
shows the possible moves of all the 4 queens.

Given a state (a board with 4 queens), we can identify the child states for
¿his state by creating a new board for each of the possible queen position
changes, given horizontal movement only. For Fig. 2.26, this board
configuration has six possible new child states.

a) Best-First Search Implementation

Listing 2.10: Best-First Search Implementation
int fcest_first(int startnode, int cargetnode)
{

struct node ‘closed, *open;
closed=list_create();
cpen = li st_create() ;

57

list_add(open, startnode);
while !list_isEmpty(open)
(// f i n d n o d e w i t h m i n i m u m f

current=list_getMin(open);
if (current==goal)
(// d i s p l a y t h e p a t h t o g o a l

list_printSolution(current);
return 1;

}
list_add(closed, current);
list_delete(open, current);
for < n e i g h b o r i n l i s t _ i s N e i g h b o r s (c u r r e n t) >

if !list_isMember(closed, neighbor)
list_add(open,neighbor) ;

return -1;
end;

The demonstration here shows a part of the tree with the root node and the
solution found at depth two. A condensed version of this run is shown in Figure
2.27, where the functions used are: g () - level o f the node, h Q - number of

pairs of queens attacking each other.

Figure 2.27. Graphical (condensed) view o f the search tree

5 s

b) Variants o f Best-F irst Search

i) Greedy algorithm

The simplest variant o f the first strategy is the greedy strategy where only
the heuristic function h : V -> R is used to evaluate the attractiveness of a node.

Since h() representing the closeness to the goal is the only factor of used to

determine which node to select next, the algorithm is called “greedy”. Each
node assigns the estimated cost of the shortest path from that node to the target

node vg . Any hQ function can be assumed in principle as long as, for each

node v e V, it satisfies the following conditions:

• /»(v)>0,

• h (v)< h '(v)

■ * (» .)=»■

where A* (v) is the real cost of the path from node v to the target node.

For example, in the search for the shortest path on the map, the role of such
a function can be the distance between the node currently under development
and the target node.

ii) The beam search

Another variant of best-first search is beam-search, whjch uses the heuristic

/ (v) = h (v) and it keeps only a set of the best candidate nodes for expansion.

This makes the variant more memory efficient, but includes the new risks that
optimal nodes can be discarded and lost.

2.7.2. A* SEARCH

In 1968, Peter Hart, Nils Nilsson and Bertram Raphael proposed an

extrem ely efficient best-first search algorithm, the A* algorithm. It finds the

shortest path between the start node and any of the target nodes using the same

5 9

idea of evaluation function / 0 from Eq. (2.1) that represents the estimated cost

o f the solution containing the node v. This function is calculated as:

f (v) = a - g (v) + P -h (y) (2.2)

where g(v) is the real cost of the path from the starting node v0 to the current

node v, and h(v) is the estimated cost (a heuristic) o f the best path from v to vg ,

a and /? are the weights for tuning the effects o f the functions g() and /?() on

th e /) .

As in the case of the greedy strategy, h(v) cannot overestimate (so called

admissible) the real cost h’(v) of the path connecting nodes v and vg This

requires also that the heuristic be monotonie, which means that the cost never

decreases over the path. Or in other words, function g(v) monotonically

increases, while h(v) monotonically decreases.

It is also required that heuristics hÇ) be a monotonie function in the sense

that its values decrease (or grow) monotonically along each path connecting

nodes v0 and v^. In this case, the cost / (v) does not decrease (or increase)

along each path or for each child node v . The operation of the algorithm A*
represents the pseudocode in Listing 2.11.

LISTING 2 .1 1 : P se u d o -c o d e f o r th e A* s e a r c h a lg o r i th m

void A * ()
{

while (openList is not empty)
{

cur_state=getListBest(&openList);
p u t L i s t (c l o s e d L i s t , c u r _ s t a t e) ;

/* Do we h a v e a s o l u t i o n ? * /

if (cur_state is goal state)
{

s h o w S o l u t i o n (c u r _ s t a t e) ;
return;

}

else
(

if (c u r _ s t a t e i s t o o d e e p) continue;
for (a v a i l a b l e c h i l d s t a t e s)

(
c h i l d _ s t a t e = g e t N e x t C h i l d (c u r _ s t a t e) ;
if (c h i l d _ s t a t e i s v a l i d)

{
evaluate_h_g_f_value(child_state);
/* New child candidate on the OPEN list? */
if (onOPENList(child_state))
(/ / . . .

update_g_value(child_state) ;
/ / . . .

)
else
{ / / . . .

putList(openList, child_state);
/ / . . .

)
}

)
)

}
return;

)
Note in the flow from Listing 2.11 that once we find the best node from the

OPEN list, we expand all of the child nodes from that best node. If the new
child nodes are not found on either the OPEN or CLOSED lists, they are added
as new nodes. If the new node is on the CLOSED list, we discard it, if the new
node is on the OPEN list, but the new node has a better g() value, we update

the value of g() for the node record on the OPEN list. By re-evaluating the

nodes on the OPEN list, and replacing them when cost functions permit, we

allow better paths to emerge from the state space

61

a) Using A * Search with the Eight Puzzle

W e’ll apply A* here to the Eight Puzzle with starting node is shown cn Fig.
2.6a. From that state, since the empty cell is at the comer then there are only
two legal moves that are possible. The ‘1’ cell can move left, and the ‘6’ cell
can move down. Figure 2.28 shows the moves possible from the initial puzzle
configuration (in Fig. 2.6a) to depth two of this state space tree.

This implementation uses the simple, but effective, tiles-out-of-place
heuristic, in which the cost g(v) from the root to the current node is the depth

of the tree and the estimated cost /)(v) to the goal node (excluding the blank) is

the number o f misplaced cells. These heuristics are given in the tree in Fig.

2.28. From the root node, only two moves are possible. At the bottom of this
tree, you can see that the cost function has decreased, indicating that these
board configurations are likely candidates to explore next.

9=2;

Figure 2.28. Eight Puzzle tree ending at depth two, illustrating the cost
functions

b) A * Search Implementation

A* algorithm was implemented in the function a s t a r f) following the
draft in the Listing 2.11. Let’s start with the evaluation function which
calculates the estimated cost from the current node to the goal (as the number of
cells out of place), see Listing 2.12. The function simply enumerates the 3x3
board as a one-dimensional vector, incrementing a score value whenever a cell
is present in a position it should not be in.

LISTING 2.12: The h(n) estimating cost metxic in Eight Puzzle
double h(board_t *board_p)
{

int i, score=0;;
const int test[MAX_BOARD-1]={1,2,3,4, 5, 6, 7, 8);
for (i=0;i<MAX_BOARD-1;i++)

score+=(board_p->array[i]!»test[i]);
return (double)score ;

}
The a s t a r function is shown in Listing 2.13. Prior to calling this function,

we’ve placed the input board configuration onto the OPEN list. Then we work
through the OPEN list, retrieving the best node (with the least / 0 value using

g e t L i s t B e s t) and immediately place it on the CLOSED list. We check to see
if this node is the solution, and if so, we report the success of the search with
the results. To minimize searching too deeply in the tree, we defined a
MAX_DEPTH constant and will stop the search i f then M A X D E PT H level
has been reached.

The next step is to list out the possible moves from this state. The
g e tc h i ld B o a r d function is used to return an child node (or a next move). If a

move isn’t possible, then a NULL is returned and it’s ignored.

With a new child node, we first check to see if it’s already been evaluated
(if it’s on the CLOSED list). If it is, then we re to destroy this node and
continue (to get all the child nodes for the current board configuration). If
we’ve not seen this node (a particular board configuration) before, we calculate
the heuristics for the node. The node's depth in the tree is equal the parent’s

63

depth plus one. Then we call h() to get the tiles-out-of-place metric, which will

act as our h() value (cost from the root node to this node). And the / () value is

initialized with Eq. (2.2) with a = 1 and ¡5 - 2 to give h() value higher

influence to the evaluation of / () .

With the / () value calculated, we check to see if the node is on the

OPEN list. If it is, we compare their / 0 values. If the node on the OPEN list

has a worse / () value, the node on the OPEN list is discarded and the new

child node takes its place (setting the predecessor link to the parent, so we know
how we got to this node). If the node on the OPEN list has a better / 0 value,

then the node on the OPEN list remains on the open list and the new child is
discarded.

Finally, if the new child node exists on neither the CLOSED or OPEN
list, it’s a new node that we’ve yet to see. It’s simply added to the OPEN list,
and the process continues.

This algorithm continues until either one o f two events occur. I f the
OPEN list becomes empty, then no solution was found and the algorithm exits.
If the solution is found, then s h o w S o lu tio n is called, and the nodes linked
together via the predecessor links are enumerated to show the solution from the
initial node to the goal node.

LISTING 2 .1 3 : The A* a lg o r i t h m

void astar(void)
{

board_t *cur_board_p/ *child_p, *temp;
int i;
/* W h i l e i t e m s a r e on t h e o p e n l i s t * /

while (listCount(&openList_p))
{

/ * G e t t h e c u r r e n t b e s t b o a r d on t h e o p e n l i s t * /

c u r _ b o a r d _ p = g e t L i s t B e s t (& o p e n L i s t _ p) ;

p u t L i s t (& c l o s e d L i s t _ p , c u r _ b o a r d _ p) ;

/* Do we have a solution? */
if (:ur board_p->h==0.0)

s h o w S o l u t i o n (c u r _ b o a r d _ p) ;
return;

else

/* Don't go too deep */
if (cur_board_p->depth>MAX_DEPTH) continue;
/* Enumerate adjacent states */
for (i=0;i<4;i++)
(

child_p=getChildBoard(cur_board_p,i);
if (child_p!=NULL)
{

if (onList(SclosedList_p,child_p->array, NULL))
(

nodeFree(child_p);
continue;

}
child_p->depth=cur_board_p->depth+l;
child_p->h=evaluateBoard(child_p);
child_p->g=(double)child_p->depth;
child_p->f=(child_p->g*ALPHA)+ (child_p->h*BETA);
/* New child board on the open list? */
if (onList(5openList_p,child_p->array, NULL))
{

temp=getList(SopenList_p, Child_p->array);
if (temp->g<child_p->g)

' t
nodeFree(child_p);
putList(sopenList_p, temp);
continue;

)
n o d e F r e e (t e m p) ;

)
else
(Z* Child board is r.ew or better than a

previous board. Place cn the open list.*/

6 5

child_p->pred=cur_board_p;
putList(sopenList_p, child_p);

}
}

}
}

)
return;

)

c) Eight Puzzle Demonstration with A *

In the implementation, the tiles are labeled A-H with a used to denote
the blank tile. Upon execution, once the solution is found, the path taken from
the initial board to the goal is enumerated. This is shown below in Listing 2.14,
minimized for space

LISTING 2.14: A sample run of the A* program to solve the Eight
Puzzle.

2 3 6
1 0 4
7 5 8

2 3 6
1 4 0
7 5 8

2 3 0
1 4 6
7 5 8

2 0 3
1 4 6
7 5 8

0 2 3
1 4 6
7 5 8

< '6

1 2 3
0 4 6
7 5 8

1 2 3
4 0 6
7 5 8

1 2 3
4 5 6
7 0 8

1 2 3
4 5 6
7 8 0

Solution steps 8

This is an illustration of the general fact that formal correctness does not
always go hand in hand with good efficiency computation.

2.8. CHAPTER SUMMARY

As a Chapter conclusion, search algorithms play special roles and are of
extreme interest in AI because many problems can be presented as search
problems in a states space. Both uninformed and informed search algorithms
are popular due to their advantages and disadvantages but in AI games, the
informed search has wider application since it may help to reduce the searching
area (or possibilities) in complex problems

6 7

Chapter 3: PROLOG - A Logical Programming
Language

This chapter describes one of the well-known logical programming
languages we can use to solve problems related to artificial intelligence, which
is PROLOG. The language in its original form is quite old but its concepts are
still present today and are used in newer information system solutions. The
algorithm does not necessarily have to be written in one of the imperative
programming languages (i.e. C, Java, Pascal), but it can often be done more
easily and faster using the declarative programming language, i.e. PROLOG for
logic programming or LISP for functional programming. The ultimate goal is to
change the way we think about the problem and the ability to solve it in
different than the classical way we do with other popular programming
languages such as C, Pascal, FORTRAN, Java,... Although computers were
used mostly for performing numerical calculations, it was also found out that
the numbers could represent not only pure values but also features of arbitrary
objects. Operations on such features could be used to represent rules for
creating, relating or manipulating symbols and rules.

3.1. PROLOG LANGUAGE

The name of the language itself - PROLOG - already has information about
its purpose. The word PROLOG comes from the formulation of
‘PROgrammation en LOGique’, which in French means logical programming.
PROLOG was created in 1971 by Alain Colmeraurer and Phillipe Roussel.
Colmerauer studied the possibility of processing natural language, whose
semantics were represented by logical expressions. For this reason, the
theoretical basis of PROLOG is the first-order predicate calculus. Even now it
is preferred in many programs related to mathematics logic, natural language
processing, solving symbolic system of equations,..

The most important and often the most surprising and amazing thing about
PROLOG is that writing a program in PROLOG is not based on describing an
algorithm! In PROLOG in particular and in Al-based languages programming,
the main implementation effort is the problem specification process.

We were told that before we start writing the program we have to design
the appropriate algorithm. Once we learned it and took it for granted, it
suddenly turns out that it does not have to be. Unfortunately, it is very difficult
to stop thinking algorithmically about the problem. This is something that is
different in PROLOG. Here, instead of describing an algorithm, we describe the
objects related to the problem and the relations between these objects. Hence
PROLOG is often referred to as descriptive and declarative language. This
means that by implementing a solution to a problem we do not provide a way to
solve it (as is the case in imperative programming languages such as C or Java),
but we define what it involves using the facts and rules. The role of PROLOG is
to infer the solution based on the information we provide.

3.2. OBJECTS AND RELATIONSHIPS

Programming in PROLOG bases on “defining” objects and determining
their binding relationships. PROLOG programs are declarative collections of
statements about a problem. In the program we do not specify how a result is to

be computed, this is quite different from imperative and even functional

programming, in which the focus is on defining how a result is to be computed.
Using PROLOG,, programming can be done at a very abstract level quite close
to the formal specification of a problem. Main objects in PROLOG are defined
as facts, axioms and logical rules for deducing new facts. However, the way
PROLOG defines and uses its object is very different from the way the classical
object-oriented programming languages do

Although we are dealing with PROLOG, to make ourselves aware of what
is so different from other languages, let us take a little reminder about what is a
“classical” object, known from such languages as C ++ and Java In this
perspective, the object is a fundamental concept that is part of the paradigm of

69

objectivity in software analysis and design, and in programming. Its concept is

to facilitate digital representation of real objects.

An object in the sense of PROLOG is something we can call ‘an existence’.
We do not define what it consists of and what it can do with it (like we do in
0 0 programs), but what it is. In addition, for each object we define the
relations that this object is subjected to. With the help of objects we describe an
interesting piece of the problem. The action of the PROLOG program reveals
the possibility of asking questions related to the previously described world.

The simplest way to describe a problem is to give facts related to it, such

bigger(motorbike, bike),
bigger(car,motorbike).
bigger(train,car).

The above facts state that: the motorbike is bigger than the bike, the car is
bigger than the motorbike and the train is bigger than the car,...

With these three facts written in PROLOG instructions, we have defined
several objects (b ik e , m o to rb ik e , car, t r a in) and linked them with a

b ig g e r relation expressing which objects are bigger than others. The important
thing is that we still do not know the sizes or the dimensions of any object. The,
objects simply do not have yet (they don’t have to) the information about their
sizes.

After having those three facts, we can start ask questions related to the

reality it describes. Please note that in this chapter, we use the text to
indicate the prompt of the PROLOG system where we will input our predicates
since it is the prompt used by one of the most popular PROLOG simulator
SWI-PROLOG [WebProlog], the text following later contain the result(s)
returned by the simulator

?- bigger(car,motorbike).
Yes

In this way we get an affirmative answer to the question: Is the car bigger
than the motorbike? Being more precise, the question is: Is it known that car is
bigger than a motorbike? This is a significant distinction, because when we ask

?- b i g g e r (car,b i k e).
No

It should be read as: Nothing is known about if the car is bigger than a bike.
This does not mean that it is not true for sure, it’s just PROLOG does not find a
fact saying a car is bigger than a bike. Such an interpretation is more
appropriate, as another example shows

?- bigger(train,motorbike) .
No

From the given facts, by the transitivity and knowledge of the notion of
weight we can infer that the answer should be affirmative, according to the
reasoning. Because it is true that bigger (train, car) and bigger (car,
motorbike) and bigger (motorbike,bike)

train > car > motorbike > bike

So it is true that
bigger(train,motorbike)

and
bigger(car,bike)

B ut the PROLOG does not know yet that in relation to bigger
relationships the transitivity of the relationships may apply, and therefore, in the

light o f known facts and relationships, it gives a negative answer to bigger
t(train,motorbike) and bigger (car,bike) . This is how we come to the
situation when we need to tell PROLOG about certain relationships, or we
should define rules.

Let us deal with the transitive relationships and create the rules for them. In
mathematics, the relation (binary) of R on set domain D, which we write

R cz D~ is transitive, if for all elements a, b, c 6 A if elements (a, b) are in

71

relation R and elements (b, c) are in the relation R, then the elements (a, c) are
also in the relation R

(a R b) & (b R c) => a R c

Examples o f such relationships can be given, for example, relations of sets
inclusion, or relation to being siblings. Transitive is not a relationship of
difference, a relationship to be a parent or a friend. In the case of the
relationship bigger we consider, just add such a rule:

bigger(X,Y):- bigger(X,Z), bigger(Z,Y).

In the above rule, the symbol ‘ : means if (if the right side is the left one)

and the comma symbol acts as the logical AND operator. Symbols X, Y,
and Z are variable names (In PROLOG, the variable name starts with a capital
letter).

Putting facts and rules into one file we can now test the operation of the
program. So let's make a test o f elementary facts:

?- bigger (car,motorbike) .
More? [ENTER]
yes

For now we skip the meaning of the message 'More?' [ENTER] when it
appears. So it's time for a entering a new question:

?- bigger(car,bike).
More? [ENTER]
yes

This time we got the answer as expected. But we can learn a lot more,
asking, for example, what objects are bigger than motorbike:

?- bigger(motorbike, X) .
X=ca r [;]
X=train [;]
ERROR: Out of local stack

When you see each option, PROLOG is waiting for your decision. Pressing

ENTER means ending the search for alternative answers, semicolon V means

continuing the search. The bad message that appears at the end of this page is

not an error but should be read as ‘Nothing else is fo u n d . The semicolon ‘ as
intuitive, reads as OR (OR). Logical operators can also be used when
formulating a query, for example if there are objects X, Y such that the train is
bigger than X and at the same time X is bigger than Y :

?- bigger(train,X),bigger(X,Y).
X = car,
Y = motorbike [;]
X = car,
Y = bike [;]
X = motorbike,
Y = bike [ENTER]

3.3 . TERMS

The PROLOG program consists of terms. There are four types of terms:
atoms, numbers, variables, and compound terms. Atoms and numbers are
commonly referred to as atomic terms or constants. A set o f atoms and
compound terms is also called a set of predicates. Each term is written as a
string o f characters from the following four categories

• capital letters: A-Z

• lower case letters: a-z

• digits: 0-9

• special characters: % + - * / \ ~ A< > : . ? @ # $ & _

a) Atoms

Atom is a string of characters

• upper and lower case letters, numbers, and underscores, with the
requirement that the first character must be a lowercase letter, for
example: a, abc, aBc, abc_xyz,...

• any string included in the apostrophe, like 'î?h .is is an atom'

• Symbols such as ‘ ?- or ‘ :

73

b) Numbers

The basic number type in PROLOG is integer, for example 5, -7,... Some
simulator versions (for example SWI-PROLOG) also support real numbers, for
example 12.3, 45e4, 56e-2,...

c) Variables

The variable is a string of letters, uppercase and lowercase letters, digits,
and underscores, provided that the first character must be a capital letter or an
underscore, such as X, Xyz, _xyz, x y_1_2, _

The last example, a single underscore, is the so-called anonymous variable.
We use it whenever we are only interested in something or if it is true, but we
are not interested in its value (or anything). Please note, that if in one clause
there are multiple anonymous variables then they (the anonymous variables)
can have different assigned values.

?- a (3, 6, 9) =a (B, C, D) .
B=3,
C=6,
D=9
?- a (3, 6,9)=a (B, C, C) .
No
?- a (3,6,9) = a ■
Yes

d) Compound terms

A compound term, or recursive structure, is an object composed of other
objects, such as atoms, numbers, variables, and other compound terms.
Compound terms have the form

f (a r g _ l , . . . , arg_n)

where arg_ l,..., arg_n are terms, and f is atom (name of relationship). Using
the ability to nest other terms in complex terms, we can better describe the
problem we are having. The facts

h a s (a l p h a , c o m p u t e r) ,

h a s (b e t a , c o m p u t e r) .

only allow to say that the objects Alpha and Beta are related to the co m p u ter
object, that means, in normal language, Alpha and Beta have computers. It is
difficult to say what are the computers and if it is not by any chance the same
computer. Writing these facts differently

has(alpha,computer(desktop,winOS)).
has(beta, computer(laptop, macOS)).
hasComputer(X):- has(X,computer(_,_)).

We still have the opportunity to find out if they both have a computer, but
if we want, we can ask for something more detailed, i .e. its type and OS.

?- hasComputer(alpha).
yes
?- has(alpha,computer(X,Y)).
X = desktop,
Y = WinOS

3.4. CLAUSES, PROGRAMS AND QUERIES

PROLOG consists essentially of two types o f "programming designs"
These are the facts and rules that can be called by same term clauses.

a) Facts

The fact is a predicate ending in a dot ‘ . for example:
He has (Computer, winOS).
This is a laptop.

An intuitively understood term is a statement about the objects in question,
which we undoubtedly consider to be true.

b) Rules

Each rule consists of two parts: head and body, which are separated by the
operator ‘ : (the head is on the left of this operator) and end with a dot ‘ . ’.

The head is one predicate, while the body is one or more predicates

separated by commas ‘ and/or semicolons ‘ A comma or semicolon plays a

75

role of logical operators, mentioned above respectively an AND and an OR.. For
this reason, it is acceptable to use round brackets as a grouping element.

bigger(X,Y) longer(X,Y), heavier(X,Y).
notBigger(X,Y):- notLonger(X,Y); notHeavier(X,Y).
a(X,Y) b(X,Y); (c(X,Y),d(X,Y)).

The defined term rule is the set of conditions (body) that must be met for
the purpose (the head) to be fulfilled (fulfillment in this case means
assignment/conclude a given item of logical value TRUE).

c) Program

The PROLOG program is an ordered set of clauses. The word "orderly" in
this case is important because the order of the clauses in the source file is
significant - the clauses in are realized in order of appearance. We can see that
on the following example comparing the results of the operation of two
programs:

Program 1 Program 2
has(alpha,computer). has(beta,computer).
has(beta,computer). has(alpha,computer).
?- has(X,computer). ?- has(X,computer).
X=alpha; X=beta;
X=beta X=alpha;

d) Queries

The query has the same structure as the rule body and it also ends with a
dot. The query, which is typed in at the prompt (in SWI-PROLOG the prompt

string is ?-) is confirmed by pressing the [ENTER] key. This is understood by
the PROLOG as an order to search and check if on the basis of the given facts
and rules it is possible to prove the truth of the predicates forming the query and
the truth of the query itself. Answer ‘Yes’ means there is a chain of
transformations and substitutions that can show the truth of the query. Answer

‘No’ means that based on the knowledge held in the form of facts and rules, it

can not be shown. This does not mean that it is not.

A query that does not contain any variable,

0

a (b, c) .

is called a ground query. The expected answer for such a query is ‘Yes’ or

'No'. Theoretically, queries of this type are much easier to verify, since it is
often enough to find a valid fact.

For program like below:

a(l,2) .
a (3, 4) .

an example elementary query will be:

?- a (3,4) .
yes

Queries containing variables are referred to as non-ground queries. In this
case, finding a response can take time. The answer expected for such a query is
the proper substitution for the variables. Let's look at a simple program that
multiplies two natural numbers

m u l (0,Y,0) .
m u l (1,Y,Y).
mul(X,Y,Z):- X>1,X1 is X-l, mul(XI,Y,Zl),Z is Zl+Y.

The formula XI d s x - l in the rule can be understand as follows: XI is

assigned the result of the x - l operation. The above program is based on the
recursive definition of multiplication. The product of two numbers x and y, for
x> 1 we define recursively as

X-y=y+(x-l)•y.

For x = 0 or x = l we have

x -y = 0 , f o r x=0and x - y =y, f o r x - l .

The effects are consistent with expectations
?- m u l (1,2,X).
X=2 [ENTER]
yes
?- m u l (0,2,X).
X=0 [ENTER]
yes
?- m u l (2,3,X) .

77

X=6 [ENTER]
Yes
?- m u l (2,3,6).
More? [ENTER]
Yes

3.5. QUERY EVALUATION

3.5.1. Expressions Matching

Two terms are matched if they are identical or can be identical by
substituting the variable values.

It is important that substitutions for variables are identical throughout an
expression. The only exception is the anonymous variable that may have
different values in different places. For example, two terms

myTerm(a , b)
myTerm(a,X)

are fit together because the substitution for the x atomic variable b makes these
terms identical

?- myTerm(a,b)=myTerm(a ,X).
X=b

On the other hand, they will not fit the terms in the following examples

?- myTerm(a ,b)=myTerm(X,X).
No
?- myTerm(a,X)=myTerm(X,b).
No

Because x can not have both a and b values set at the same time, replacing

X with an anonymous variable causes the expression to become matched.

?- m y T e r m (a ,b)= m y T e r m (a ,_).
yes
?- m y T e r m (a ,_)= m y T e r m (_,b).
yes

Matching a term to itself (self-matching) is not a trivial process at all, as we
can see by looking at the example below.

?- a(X,b)=a(f(Y) ,Y) ,b(X)=b(f(Z)) .
X = f(b) ,
Y = b,
Z = b.

The matching process is also called unification

3.5.2. Goal execution

Query entering into PROLOG interface triggers a process to check if there
is a chain of substitutions and transformations that can be used to assign a
logical value TRUE to the actual query. PROLOG’S inference process consists
of two basic components: a search strategy and a unifier. The search strategy is
used to search through the facts and rules database while the unifier is used for
matching the results and returns the bindings that make an expression true.
Searching for such proof is called goal execution. Each predicate in the query
becomes the goal that PROLOG is trying to fulfill one by one. The search
strategy is used to traverse the search space spanned by the facts and rules o f a
PROLOG program. PROLOG uses a top-down, depth-first search strategy.

If identical variables occur on several bases, then, as already described,
they will get identical substitutions. If a query is specified, then it may either
match a fact or a rule. In case of a rule, PROLOG first tries to match the head of
that rule, if the target matches the rule head, then there are appropriate
substitutions within the rule, and thus we get a new target, replacing the starting
one. I f this target consists of several predicates, then it is divided into several
threads, each of them being treated as a starting target. The process of replacing
an expression by another expression is called a resolution and can be described
with the following algorithm

1. As long as the query is not empty, execute

a) Choose next term from the query

b) Find a fact or a rule unifying with the term. If there is no such

fact or rule, return FAIL, otherwise:

i. If a fact found, remove it from the query.

ii. If a rule is found, replace the term body with the rule.

2. Return SUCCESS.

Applying unification and resolution allows to prove the truth or ts lack,
according to the following principles:

1. If the target is an empty set, return TRUE.

2. If there are no rules head nor facts unifying with the expression under
consideration, return FALSE.

3. In the case of failure (returned FALSE), return to a place where by
applying the resolution you can get another expression and retry the
process. This principle is called backtracking.

In this description step 3 is particularly important, which in some way may
cause the restart of the entire algorithm. This means that PROLOG in point 1-b)
memorizes the unification occurrences and, at the appropriate moment, is able
to search for further unifications occurring after the selected one.

We apply the above rules until we explore all the possibilities by choosing
the next available expression in each step. This gives us the opportunity to find
several different proofs.

3.6. LISTS

3.6.1. Syntax

In PROLOG, list is an ordered chain of elements of any length. As part of
the list can be used any valid PROLOG term, i.e. atom, number, variable, also
term composed of a different list. We place them between the square brackets

‘ [‘ and ‘]' and separate them with a comma ‘ , ’,

[A, X, a (b, X) , [b , c, d] , [], 123]
An empty list is written as a pair of empty parentheses

[]

SO

3.6.2. The head and tail of a list

Lists are always processed by dividing them into two (logical) parts: the
head, which is the first element of the list, and the tail, which is all that
remained of the list after removing the head.

The empty list has no head or tail. The head of a list containing only one
element is that element, while the tail is an empty list.

To separate from the list its head and tail the symbol ‘ 1’ is used. Elements

to the left o f the symbol ‘ | ’ refer to the head or to the first few elements of the
list, while the right indicates the tail.

?- [] = [H|T] .

No
?- [a,b]=[H|T].
H=a,
T=[b]
?- [a] = [H | T] .
H=a,
T= [1
?- [a».[b, c]] = [H | T] .
H=a,
T = [[b,c]]
?- [[a ,b] , c] = [H|T] .
H = [a ,b],
T=[cJ
?- [a,b,c,d]=[Hl,H2|T].
Hl = a,
H2=b,
T=[c,d]

Looking at the examples above, we note that

• The list’s tail, if any, is always a list (empty or not, but list).

• The head (and in general, all elements occurring before) are part of the
list, and as part of the list may be any term (and therefore may or may
not be a list).

81

It’s all about the lists that are purely theoretical, we can say. And because
the list is the main (in terms of "strength" or capability) data structure in
PROLOG, in order to better understand how to deal with lists, we will try to
define some predicates that allow some elementary operations on the lists.

3.6.3. Predicate to check if something is a list

Actually, every way we try to solve a problem in PROLOG is recursive.
We start with the simplest case, and then generalizing it to arbitrary complexity.
It is not the case for a predicate to check if something is a list. The simplest
example of a list is an empty list.

All other letters, however, can be spread on the head and tail, with the tail
must be a list. Hence we eventually get

isList([]).
isList([HIT]) isList(T).

3.6.4. Predicate to check if something belongs to the list

In this case, the simplest condition is: element X belongs to the list if X is
the list head

isMember(X, [X I_]) .
or the same in another way

isMember(X,[Y|_]) X=Y.
If he is not a head, then he must belong to the tail of the list
isMember(X,[_IY]) :- isMember(X,Y) .

However, as often happens in PROLOG, usually each predicate can be

used in a completely different way than the one to which it was intended. In this
case, the predicate isMember can be used to populate all items in the list.

?- isMember(X,[a,b ,c]).
X =a;
X=b;
X = c ;
No

?- i sMember(X , [a, [b ,c],d] .

X=a;
X=[b , c] ;
X=d;
No

3.6.5. A predicate linking two lists

In the standard simple case, an empty list linked (concatenated) with a list

results in that same list:
link([],List,List) .

A general case can be described as: to combine something ([H | T]) with a
list, you must first attach the tail of this thing (T) to the list and then add the
head H.

link ([H|T],List, [HI Res]) link(T,List,Res) .
For example:
?- lin k ([1,2,3],[a,b,c],Res).
Res= [1, 2, 3, a, b, c]

As before, this time we can use the l i n k predicate to find out the answer to
which list should be merged with the list [1, 2, 3] to get the list [1, 2, 3, a, b, c]

?- li n k ([1,2,3],X,[l,2,3,a,b,c]).
X= [a , b , c]

Even more, we can find all the pairs of lists, the concatenation of which
gives [1, 2, 3, a, b, c]

link(X,Y,[1,2,3,a,b,c]).
X= [] ,
Y*= [1, 2, 3, a,b,c} ;
X=[l],
Y= [2 , 3, a, b, c] ;
X = [1,2],
Y = [3,a ,b,c];
X = [1,2 , 3] ,
Y = [a ,b,c];
X = [1,2,3,a] ,
Y=[b,c];

83

X=[l,2,3,a,b] ,
Y=[c] ;
X= [1, 2, 3,a,b,c],
Y= [] ;

3.7. OTHER SELECTED OPERATORS

3.7.1. Arithmetic operators

The main purpose of PROLOG is not for carrying out heavy-duty

mathematics. The pattern for evaluating arithmetic expressions is (where E xpr

is some arithmetical expression)

X is Expr

The ‘i s ’ operator is meant specifically for mathematical functions. The left

argument has to be a variable and the right argument has to be a mathematical
function with all variables instantiated. The *=’ operator is used for unification

of variables and can be used with any two arguments. The variable x will get to

the value of Expr. For example,

?- X is 1+2.
X=3
yes
?- X is 2-1.
X=1
yes
?- X is 2*3.
X=6
yes
?- X is 3/2.
X=1. 5
yes

Please note the difference between ‘i s ’ and

?- (2 is (3-1)) .
Yes

You'll get ‘ Yes', because the (36-5) is evaluated (solved). But if you ask

?- (2 = (3-1)) .
No

You'll get ‘Wo’, because Prolog will compare a number ‘2’ to a formula '3 -

1 \ rather than to the result of solving the formula.

PROLOG knows many other ways of comparing two terms or instantiating
variables, but for now, these two are enough. When working with functions, we
will almost always use the is operator.

Other pre-defined PROLOG arithmetic infix operators are:

• >: greater than

• <: less than

• >=: greater than or equal to

• =<: less than or equal to

3.7.2. Advanced numerical operators

• g cd : Greatest common divisor of two numbers:
?- X is gcd(49,21).
X=7.

• max: Maximum of two numbers:

?- X is m a x (5,2).
X = 5 .

• f lo o r : The largest integer smaller or equal to the evaluation:

?- X is floor(2.32).
X=2 .
?- X is floor (-2 . 32) .
X=- 3 .

• ceil: The smallest integer larger or equal to the result of the evaluation:

?- X is ceil (2.32) .
X = 3.
?- X is ceil(-2.32) .
X=-2 .

• s q r t: the square root \[x of the variable x

85

?- X is sqrt (3) .
X = 1.732.

• log: the natural logarithmic ln(x) of the variable x

?- X is log(3).
X = 1.0986.

• loglO: the decimal logarithmic log10(x) of the variable*

?- X is loglO(100) .
X = 2.0.

3.7.3. Trigonometrical functions

• sin: the sine function sin(x) of the angle (measured in radian)

?- X is sin (1) .
X = 0.8414709848078965.
?- X is sin(pi).
X = 1.2246063538223773e-16.

• cos: the cosine function cos(x) of the angle (measured in radian)

?- X is cos(1) .
X = 0.5403023058681398.
?- X is cos (pi) .
X = -1.0.

• tan: the tangent function tan(x) of the angle (measured in radian)

?- X is tan (1) .
X = 1.5574077246549023.
?- X is tan(pi/4) .
X = 0.9999999999999999.

• asin: the inverse sine arcsin(x) of a number (angle measured in radian;

?- X is asin(l).
X = 1.5707963267948966.

• acos: the inverse cosine arccos(x) of a number (angle measured in

radian)

?- X is acos (1) .
X = 0.0.

• atan : the inverse tangent arctan(x) of a number (angle measured in

radian)

?- X is atan(1).
X = 0.7853981633974483.

• sinh : The sine hyperbolic sinh(x) of a number x

?- X is sinh(1).
X = 1.1752011936438014.

• cosh: The cosine hyperbolic cosh(x) of a number x

?- X is cosh(1).
X = 1.5430806348152437.

• tanh: The tangent hyperbolic tanh(x) of a number x

?- X is tanh(1).
X = 0.7615941559557649.

• a sinh: The inverse sine hyperbolic asinh(x) of a number

?- X is asinh(1).
X = 0.8813735870195429.

• a cosh: The inverse cosine hyperbolic acosh(x) of a number x

?- X is acosh(1).
X = 0.0.

3.8. SELECTED EXAMPLES OF PROLOG PROGRAMS

In this section we will present some examples on simple problems of
algorithms and data structures. Most of these examples are Well known to the
readers in other programming languages and it would be convenient to see how
the PROLOG is different from other programming languages.

3.8.1. Example of generating Fibonacci list

The Fibonacci sequence {/„} is 1, 1, 2. 5. 8, 13, 21, 34, 55,... with the

elements are defined in recurrent formula

87

f \ - /2 -
n ^ 3 f n = f n-2+fn-l

The implementation in PROLOG is as follow:
fibonacci (1,1) .
fibonacci(2,1) .
fibonacci(N,R) N>=3,N1 is N-1,N2 is N-2,

fibonacci(N1,R1),
fibonacci(N2,R2),
R is R1+R2.

Example of running and querying:

?- fibonacci(8, R) .
R = 34

3.8.2. Example of Sorting An Array

There are different methods of sorting an array of values. We will

demonstrate one of the basic methods, which is the I n s e r t i o n S o rt.

The algorithm can be demonstrated using an example array in Fig 3.1.
Starting near the top of the array in Fig. 3.1a, we extract the 3. Then the above
elements are shifted down until we find the correct place to insert the 3. This
process repeats in Figure 3.1b with the next number. Finally, in Figure 3. lc, we
complete the sort by inserting 2 in the correct place.

S8

A
6 1 5 7 3 2 4 8

1
1 6 5 7 3 2 4 8

\
1 5 6 7 3 2 4 8

1
1 5 6 7 3 2 4 8

\
1 3 5 6 7 2 4 8

I
1 2 3 5 6 7 4 8

1
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 3.1. Insertion Sort demo for an input array o f 8 elements {6, I, 5, 7, 3,
2, 4, 8}

Assuming there are N elements in the array, we must index through N - 1
entries. For each entry, we may need to examine and shift up to N - 1 other
entries.

for i=2->N
{

find the correct place k from l->[i-l] for A[i]
key=A[i];
remove A[i];
shift [k]...[i—1] to [k+l]...[i] (by 1 element)
move key into A[k]

)

The PROLOG implementation of insertion s o r t can be as follow:

insert_sort(List,Sorted) i_sort(List,[],Sorted).
i_sort([],Tmp,Tmp).
i_sort([H|T],Tmp,Sorted):- insert'H,Tmp,NTmp),

i_sort T ,NTmp,Sorted).
insert (X, [Y|T], [Y|NT]) :- X>Y, insert(X,T,NT) .
insert! X, [Y|Tj,[X,Y|T]i : - X = *- Y .

insert(X,[],[X]).
Running from the simulator:

?- insert_sort([6,1,5,7,3,2,4, 8] ,X) .
X = [1, 2, 3, 4, 5, 6, 7, 8].

3.8.3. Example of Sorted Binary Tree

a) Tree data structure

Binary search trees can be represented in PROLOG by using a recursive
structure with three arguments: the key of the root, the left sub-tree and the right
sub-tree - which are structures of the same type. The empty tree is usually

represented as the constant nil. For example, a binary search tree in Fig. 3.2
can be specified in PROLOG using the following structure:

• Figure 3.2a: t (3, nil, nil)

• Figure 3.2b: t (2, t(l, nil, nil), t(3, nil, nil))

• Figure 3.2c: t(8, t(4, t(2, t(l, nil, nil), t(3, nil,

nil)), t(7, nil, nil)), t(12, t(10, t(9, nil, nil),

nil), t(15, nil, nil)))

b) Tree traversal

There are three possible modes of traversing trees inorder, preorder and
postorder, depending on the order in which the nodes are processed

(b)

Figure 3.2. Examples o f sorted binary trees

The inorder traversal processes the left sub-tree first, then the root node,
then the right sub-tree. The predicate is presented below:

inorder(t (K,L,R),List):- inorder(L,LL), inorder(R,LR),
append(LL,[K|LR],List).

inorder(nil, []) .
The predicates for the preorder and postorder traversals are as follow:
preorder(t (K,L,R),List) preorder(L,LL),

preorder(R,LR),
append([K|LL],LR, List).

preorder(nil,[]).
postorder(t (K,L,R),List) postorder(L,LL),

postorder(R,LR),
append(LL,LR,R1),
append(Rl,[K],List).

postorder(nil,[]).

c) Key searching in the tree

Key searching in a sorted tree is quite simple. The se a rc h _ k e y predicate
is presented below. If the key is not found, a -n il value is returned.

search_key(Key,t (Key,_,_)) :-! .
search_key(Key,t (K,L,_)) KeycK, !,

search_key(Key,L).
search_key(Key,t(_,_,R)) search_key(Key,R).

d) Inserting a key

Each new key is inserted as a leaf node in a binary search tree. Before
performing the actual insert, we must search for the appropriate position of the
new key. If the key is found during the search process, no insertion occurs.
When reaching a nil in the search process, we create the new node.

The in s e r t_ k e y predicate is presented below:

insert_key(Key,nil,t (Key, nil, ni1,)
write('Inserted '),
write(Key),
nl.

91

insert_key(Key,t(Key,L,R),t (Key,L,R)) : -
i• /
w r i t e (' K e y a l r e a d y i n t r e e \ n ') .

i n s e r t _ k e y (K e y , t (K , L , R) , t (K , N L , R)) : -

Key<K, !,

i n s e r t _ k e y (K e y , L , N L) .

i n s e r t _ k e y (K e y , t (K , L , R) , t (K , L , N R))

i n s e r t _ k e y (K e y , R , N R) .

P lease note tha t ‘nl' is equ ivalen t to ‘write ('\n •)' w hich m eans m ove

che p rin ting cursor to the new line.

e) Deleting a key

T he deletion o f a key in a b inary search tree also requires that the key be

initially searched in the tree. O nce found, w e d is tingu ish am ong three deletions

of: a le a f node, a node w ith one child and a node w ith both children.

T he first tw o cases are ra ther sim ple. W hen deleting a leaf, the its parent

node w ill have new child equal N IL (if the le a f itse lf is also the root, the w hole

tree becom es em pty). W hen deleting a node w ith only one child, th a t child node

will rep lace the g iven node.

F o r the th ird case w e have tw o alternatives: e ither replace the node to

delete w ith its paren t (o r successor) - by reestab lish ing the links correctly, or to

‘hang” the left sub-tree in the left part o f the righ t sub-tree (o r vice-versa).

W e have im plem ented the firs t a lternative in th e delete_key predicate as

follow:

d e l e t e _ k e y (Ke y , n i l , n i l) w r i t e (K e y) ,

w r i t e (' n o t i n t r e e \ n ') .

% this clause covers also case for leaf (L=nil)
d e l e t e _ k e y (K e y , t (Ke y , L , n i l) , L) ! .

d e l e t e _ k e y (K e y , t (Ke y , n i l , R) , R) ! .

d e l e t e _ k e y (K e y , t (K e y , L , R) , t (P a r e n t , N L , R)) : -
i

g e t _ p a r e n t (L , P a r e n t , M L) .

d e l e t e _ k e y (K e y , t (K , L , R) , t (K , N L , R))

KeyCK, !,
delete_key(K e y ,L , N L) .

de l e t e _ k e y (Key,t(K,L,R),t (K,L,NR)) :-
delete_key(Key, R, N R) .

get parent(t(Parent,L,nil),Parent,L)
get_parent(t (Key,L,R),Parent,t(Key,L,NR)):-

get_parent(R, Parent, NR).

f) Display a tree

To display a tree means using the visualization to help checking th
correctness o f the tree’s algorithms. We use the simple display similar to th
tree of the Explorer in Windows systems, where each node is shifted (tabbed
right to the depth at which the node appears in the tree.

The root of the tree is considered to be at depth 0. An example of a tre
displaying is below:

2

15
10

................................... 12

4
8

9
7

r 3
1

which is equivalent to the tree on Fig. 3.3.

Figure 3.3. An example o f binary tree

W e can see tha t the keys on the left are p rin ted first, then the root, then the

keys on the right. T his can be achieved using an inorder traversal in th e tree.

* inorder traversal
t r e e _ d i s p l a y (n i l , _) .

t r e e _ d i s p l a y (t (K , L , R) , L e v e l)

LI i s L e v e l + 1 , t r e e _ d i s p l a y (L , L I) ,

k e y _ i n d e n t (K , L e v e l) , t r e e _ d i s p l a y (R , L I) .

% Predicate which prints key K at Level tabs
% from the screen left margin and then proceeds
% to a new line
k e y _ i n d e n t (K , L e v e l)

L e v e l > 0 , ! , LI i s L e v e l - 1 ,

w r i t e (' \ t ') ,

k e y _ i n d e n t (K , L I) .

k e y _ i n d e n t (K , _) w r i t e (K) , n l .

4

Chapter 4: LISP - A Functional Programming
Languages

In terms o f Artificial Intelligence (AI), in principle, apart from the
distinction between “strong” and “weak” AI, we can divided AI approaches
into:

• Symbolic - Intelligence as a symbols operator,

• Conjugal - Intelligence comes from the connections between the
symbols.

Actually, the oldest paradigm is a logical paradigm associated with a
typically symbolic approach. It is related to the emergence of LISP. The name
LISP comes from the English word LISt Processing. The list was supposed to
be a tool for efficient processing of symbolic data. And as soon as we see, LISP
is pretty good in processing various types of lists. LISP is very old, it is the
second high-level programming language in terms of age (only Fortran is older
than LISP). LISP was official mentioned in 1959 [McCarthy59], In 1960 John
McCarthy published an article, in which he showed that with several operators
and notations for functions, a Turing-complete language (Turing-complete
language) can be obtained. John McCarthy is a pioneer in artificial intelligence.
It was he who first used the term artificial intelligence, which he formulated in
1956 at a conference in Dartmouth.

The first implementation of LISP was developed by Steve Russel on the
IBM 704. The first complete LISP compiler, created in LISP, was written in
1962 by Tim Hart and Mike Levin at MIT.

In the 1970s and 1980s, LISP was the best developed and most widely used
language that offered the following set of features [WebLisp02]:

• Easy dynamic creation of new objects, with automatic garbage
collection,

• A library o f collection types, including dynamically-sized lists and hash
tables.

95

• A development cycle that allows interactive evaluation of expressions
and re-compilation of functions or files while the program is running,

• Well-developed compilers that could generate efficient code,

• A macro system that let developers create a domain-specific level of
abstraction in which to build the next level.

These features are valuable for programming in general, but especially for
exploratory problems where the solution is not clear at the onset; thus LISP was
a great choice for AI research. In the next part we will base on a newer, more
popular version of LISP, the so called Common LISP. Common LISP is not a
concrete implementation, but an ANSI specification designed to unify the
different LISP implementations that were created by mid of 1980s’. Currently,
there are several Common LISP implementations, some are closed versions and
some are available as FOSS (Free and Open Source Software).

4.1. LANGUAGE CHARACTERISTICS

LISP is a functional language (also called function programming
language). Functional programming is a programming paradigm that is a
variant of declarative programming, in which the core element o f a language is
a function, and the emphasis is on evaluating (often recurring) functions, rather
than on running commands. Theoretical basis o f functional programming was
developed in the 1930's by Alonzo Church [Church41],

LISP is a language whose expressions are based on expression-oriented
language. Unlike most other languages, LISP does not differ expressions from
statements. The result of evaluating expressions is a value (or list of values) that
can be used as an argument for another expression. Originally, John McCarthy
introduced two types of expressions:

• S-expressions, also known as symbolic expressions. They reflected the
internal representation of code and data

• M-expressions, or meta expressions. They described the functions of S-
expressions.

And although in the assumptions M-expressions were supposed to create
LISP syntax, it turned out that S-expressions were more popular. And for many
IT programmers this was considered more comfortable than the Fortran or
Algol syntax.

The inseparable element of expressions in LISP are parentheses. Thanks to
them the name LISP is also developed as Lots o f Irritating Superfluous
Parentheses or Lost In Stupid Parentheses [WebLISP], However, the syntax
based on S-expressions is the basis of its features - it is extremely regular,
which greatly facilitates its automatic processing by a computer.

The basic element of LISP syntax is the list. It is defined as an chain of
elements separated by space (white) characters and surrounded by the
aforementioned parentheses. For example:

(1 2 abc)
is a list, whose elements are three atoms: value (default type of symbol) 1, value

2, and an object name 'a b c .

Expressions are written as letters using the pirefix notation (or the
Lukasiewicz notation). Interestingly, the list as a data structure is also used in
LISP to store the source codes.

Here are some examples of code in Common LISP.

• Classic program displaying ‘Hello world’
(print "Hello world")

'• Calculation o f the factorial of a given number
(defun factorial(n)

(if (<= n 1)
1
(* n (factorial!- n 1))))))

4 .2 . EFFECT ON PROGRAMMING

In [WebLispOl] the ideas were mentioned that L ISP introduced and now
(at least some of them) are part of today's programmers reality:

9 7

1 Conditional statement: The if-then-else conditional statement is
obvious today. But not many people know, however, that the statement
was create at John McCarthy's work on LISP in a more general form as

a cond. FORTRAN at that time only had a conditional jump
instruction modeled on machine instructions set. From LISP the
statement was included into modem languages.

2. Functional type: In LISP functions are represented by a special type in

the same natural way as we normally represent integers and strings.
Functions can be assigned to variables, passed as arguments, and so
on.

3. Recurrence: of course, the concept o f recursion existed long before

LISP appeared, but LISP was the first programming language that
allowed it to be used.

4. Garbage-collection: Garbage collection is a memory management
architecture in which the process o f releasing unused memory areas is
performed automatically.

5. The program consists o f expressions: LISP is, in other words, a tree of
expressions, each of which returns a value. Most modem languages
distinguish between expressions and statements.

o Expression (in programming language) is an evaluated

(according to the rules defined in a given language) combination
of values, variables, operators, and functions that returns a
different value. It is said that the expression is evaluated to this
value. Similar situation is in mathematics: expression is a

representation of a certain value. Expressions may (though not
necessarily) have side effects. The lack of side effects is one of

the principles of functional programming, languages that do not
support at all side effects are called purely functional languages,

o Statement (of a programming language) is the smallest
independent element of the imperative programming language
The program is created as a collection of different statements.

‘'8

The statement may contain internal components (for example the
expressions). Many languages (like C language) distinguish
between statements and definitions: the statement contains an
executable code, and the definition contaims the declaration of an
identifier. In most languages, the statements differ from the
expressions that they do not necessarily netum results and can be
performed to achieve specific side effects, while expressions
always return results and usually do not cause any side effects.

Interestingly, when using a language built on the basis of
expressions, identical things (in the sense o f the resulting effects)
can be written in many different ways. So yo>u can write

(i f abc (= x 1) (= x 2))
but also can write:

(= x (if abc 1 2))
6. No matter what happens to the program, we still have access to all

aspects o f the language. This means that tthere is no distinction
between for example compilation and executti<on processes. The code
can be compiled or executed when read, can b e read or executed when
compiled or can be read or compiled when executed. The ability to
execute the code while reading it allows users to change the syntax.
Running code during compilation is the basis; o>f advanced macros that
allow you to create source code “on the i ly ” . Compilation during
execution allows you to use the language as; an extension in other
programs (for example Emacs).

4 .3 . SYNTAX BASICS FOR S-EXPRESSIONS

In this part, we will discuss the basic rules syntaix msed in LISP. Our goal is
to describe the syntax in such a way that we can start understanding simple
programs in that language quickly

9 9

a) Lists

LISP syntax belongs to one of the simplest programming languages and is
based on the so-called S-expressions. The basic elements that make up the S-
expression are list and atom. Lists are bounded by parentheses ‘ (’ and ‘ ; ’ and

contain any number o f elements that are S-expressions and separated by white
characters. The rest are atoms.

And that's basically all and for the rest we will explain how the atoms
syntax looks. In the following, we will cover the most popular types: numbers,
strings, and names.

b) Atoms ■ numbers

Having experience with other programming languages, it can be predicted
that a number is nothing but a string o f digits, possibly preceded by a sign, and
containing an optional fractional significant and integer separator. You can also
expect that the use o f so-called scientific notation, i.e. the exponent. And
indeed, all this is true. Below are a few examples of correct numbers written in
LISP.

• 1 , +2, -3: Integer numbers,

• 1 .2 , 1. 2 e 3 , 1 .2 e -4 : Floating point numbers with default precision,

• 1 .2 d 3 , l . 2 d - 4\ Floating point numbers with double precision,

Most likely, however, we will not guess the other possibilities that LISP
gives us, for example, fractions or complex numbers.

• l / 2 \ A fraction of one-second,

• - 3 / 4 , -6 /8 : Fraction minus three-forth in two equivalent ways,

• #c (10 5): Complex number 10 + 5i, it means the real part equal to 10

and an imaginary part equal to 5,...

By looking at the above examples, you can see that the same numbers can
be written in many ways, because LISP brings them to a certain canonical form
specific to the type o f number represented by the string. F or example, fractions

are always simplified, so the 2/2 is the same as 1, 1 0 is the same as the default

I 0

form l.OeO. Please pay attention that on the other hand, 1.0 is not the same as
l.OdO or 1.

c) A tom s - Inscrip tions

The string is a chain of characters enclosed in quotation marks In this

case, the openning quotation mark " (or the closing quotation mark ") is a
special character, which must be preceded by a backslash ‘V if it is a part of the
text. Because the backslash itself is a character that changes the meaning of the
character after it, so when we want to use it, we must also precede it with
another backslash.

• "Abe": A string containing 3 characters A, b and c.

• "Ab\c": A string containing 3 characters A, b, and c

• "Ab\\c": A string containing 4 characters A, b, \ and c

• "Ab\"c": A string containing 4 characters A, b,” and c

d) Atoms ■ names

In LISP, the names can be either ABC or a-b-c or *abc*. Generally
speaking, names play the role of symbols that may represent, for example,
variables or functions. Therefore, later we will use the term name and symbol.

From only the “appearance” of the names, we can not infer what they represent
(this could be done in PROLOG, for example, where variables always start with
a capital letter). Almost any character can in any way be part o f the name. The
exceptions are the following groups:

• Space character: The space character is used to separate elements of a
list, therefore it can not be part of the name.

• Numbers: Numbers can be part of a name as l<orag as the name can not be
interpreted as a number.

• Period (‘ . ’): The name may include a period ¡(a dot), but can not consist
cnly of dots.

• Special characters: There are special characters and as such should not
be part of the name: round brackets, quotes, amd apostrophes, back tick,

101

comma, semicolon, backslash, and vertical line. They should not, but
may become part of the name when preceded by a backslash or when
placed between vertical slashes.

Basically the size of the letters used is irrelevant as they are always

converted to uppercase letters, for example, the names abc, Abe and ABC are

considered to be the same symbol: ABC. The case is different when we use

special characters. For example, the strings \a\b\c or | a b c | represent the

name abc.

From the above it can be seen that the names in LISP can be much “richer”
than in other languages like C or Java. And as in most languages, there are also
some conventions related to naming.

• Multi part names are combined with a hyphen such as hello-world.

• Global variables are the names that start and end with a ‘ *’ sign.

• Constants are the names that start and end with a ‘ +’ sign.

• The name of a low-level function in a LISP program may be preceded
by one or two ‘ %’ characters.

The syntax of lists, numbers, captions, and names gives us enough insight
into what and how we can write in LISP. Other elements such as vectors and
arrays do not deviate significantly from the rules described above. It is
important to be able to combine these rules. Let's look at the following
examples:

• x; Name (symbol) X

• () ; List empty

• (1 2 3) ; List containing three numbers

• ("a b c" " x y z") ; List containing two strings

• (x y z) ; List containing three symbols

• (x 1 "abc"); List containing a symbol, a number and a string

• (+ (* l 2) 3) ; List containing a symbol, a sublist and a number

4.4 . FUNCTIONS

In this chapter we will learn how to write functions, that is, programming
constructs, which provide the most elementary mechanism of abstraction.

4.4.1. Defining Functions

LISP functions are defined using the d e fu n macro with the following
syntax

(defun name (parameter*)
"Optional description string."
body-form*)

where name is the name of the function, parameter* its an optional parameter

list, "Optional description string. " is a description of the function, a

body-form* is a string of expressions forming the body of the given function.

Practically every symbol or string can be a function name. Typically, this is
a string of letters separated by a hyphen if necessary, if the name is multi-word.
It’s rather recommended to use the style My-First-Function rather than

My First Function o rMyFirstFunction.

Looking at the following hello-world function we can easily find the
individual elements that make up it.

(defun hello-world() (format t "hello, world"))

A function that is another example includes all the described elements
(defun my-Sum(x y)
"Sum of two numbers"
(format t "Summing ~d and ~d. ~%" x y)

(+ x y))

We have one after the other

• Function name: my-Sum,

• List of parameters (x y) with which argumentts will be associated,

• Function description: The function adds two numbers with a printed
message to describe what it does.

103

• Body containing more than one expression (the above example has 2
expressions): The value returned by the last expression is the final value
returned by the function.

4.4.2. Function parameters

a) Parameters required

If the parameters (arguments) list is a list of variable names, then such
parameters are called required parameters. As the name implies, such a
parameter must be given when calling a function.

(defun abcfa b) (list a b))

b) Optional parameters

To define functions with optional parameters we use the &optional
symbol. This symbol should be after all the required parameters but before all
optional parameters.

>> (defun abc (a b ¿¡optional c d) (list a b e d))
» (abc 1 2)
==> (1 2 NIL NIL)
>> (abc 1 2 3)
==> (1 2 3 NIL)
>> (abc 1 2 3 4)
==> (1 2 3 4)

Please note that in this chapter, we use the ‘» ’ to indicate the prompt of a

LISP simulator. The ‘ ==>’ denotes the results.

O f course, the default value assigned to an optional parameter of nil can
be changed to something more appropriate. For this purpose, replace the
optional parameter with a list containing the parameter name and any
expression. If the user does not specify an argument, then the value will be the
value returned by the expression.

>> (defun abc(a Soptional (b 5)) (list a b))
>> (abc 1 2)
==> (1 2)

10 4

>> (abc 1)
==> (1 5)

For the above function abc, when calling it with (abc 1 2) it means a
has an assigned value of 1, b has an assigned value of 2. But when calling with

(abc 1), it means that a has an assigned value o f 1, b has no explicitly

assigned value so it takes the default value of 5.

LISP gives us even more freedom in determining the value of parameters.
We can make the value of a parameter depend on other arguments. An example
o f a function where such a dependency is needed is the function that creates a
rectangle object. As we know, a square is a special case of a rectangle and
therefore it is not worth creating a separate function for it. On the other hand,
the need to specify the length of both sides when they are identical is quite
annoying. However, in LISP, you can write a list cuf parameters as in the
following example

(defun make-rect (width ioptional (height width)))
This makes the optional height parameter when unspecified is set to width.

c) A ny number of parameters

The maximum number of function parameters depends on the software

version an implementation. In most cases it ranges from 4095 ^212- l j to

536,870,911 ^229 - l j . ANSI Common Lisp states that the value of CALL-

ARGUMENTS-LIMIT, a positive integer one greater that the maximum
number of arguments in a function call, is implementation dependent but must
not be smaller than 50. In LispWorks it is set at 2047. It can be checked using
the CALL-ARGUMENTS-LIMIT constant.

>> call-arguments-limit
==> 2047

Examples of functions called with variable nu;mtbe:r of parameters

(format t "hello, world")
(format t "hello, ~a" name)
(format t "a: ~d b: ~d" a bi

105

(+)
(+ 1)
(+ 1 2)
(+ 1 2 3)
(defun f o r m a t (stream string Srest values)...)
(defun +(&rest numbers)...)

d) Named parameters

If a named parameter is not given, then the default value will be given to it
as an optional parameter. Due to the use of the distinguishing name, the named
parameters can occur in any order. Here are some examples of calls

>> (defun abc(&key a b c) (list a b c))
>> (abc)
==> (NIL NIL NIL)
>> (abc :a 1)
==> (1 NIL NIL)
>> (abc :b 1)
==> (NIL 1 NIL)
>> (abc :c 1)
==> (NIL NIL 1)
>> (abc :a 1 :c 3)
==> (1 NIL 3)
>> (abc :a 1 :b 2 :c 3)
==> (1 2 3)
>> (abc :a 1 :c 3 :b 2)
==> (1 2 3)

As with the optional parameters, the named parameters can be assigned
default values and a variable specifying the “origin” of the argument.

>> (defun abc(Skey (a 0) (b 0 b-input)
(c (+ a b)))
(list a b c b-input))
>> (abc :a 1)
==> (1 0 1 NIL)
>> (abc :b 2)
= = > (0 2 2 T

; (¡6

>> (abc :b 3 : c 4)
==> (0 3 4 T)
>> (abc :a 5 :b 6 :c 7)
==> (5 6 7 T)

In addition, we can change the default behavior so that the parameters have
a different name than the variables used in the body of the function. In the
following example, write (:aa a) means a i s aa. The following function

definition abc

(defun abc (4key ((:aa a)) ((:bbb b) 0)
((:cccc c) 0 c-input))
(list a b c c-input))

allows the following call:
>> (abc :aa 2 :bbb 4 :cccc 6)
==> (2 4 6 T)

e) “Mixing" of parameters

>> (defun abc(x «optional y skey z> (list x y z))
>> (abc 1 2: z 3)
.=.=> (1 2 3.)

and
>> (abc 1)
==> (1 NIL NIL)

f) Return Value

All the previous examples returned the value o f the last expression
evaluated as the result of the function. If this default behavior is not appropriate
for us, we can use the r e tu r n - fr o m operator to instaintraneously return a value

from the function. The first argument to r e tu r n - fr o m iis the name of the block

(function) from which it returns Because this airgiument is not subject to
evaluation, there is no need to mark that as a name

The following example uses nested loops to fimdl piaurs o f numbers less than

5 w hose sum is greater than the function's argument!. HJsing r e tu r n - fr o m we

return the first found pair meeting the given conditiioms

107

(defun abc (n)
(dotimes (i 5)

(dotimes (j 5)
(when (> (+ i j) n)
(return-from abc (list i j))))))

4.5. FUNCTION AS A VARIABLE

Although the main use of functions is to call them, there are situations
where it is convenient to treat a function as a variable. The classic example here
is a sort function which, as one of its arguments, takes the function used to
compare elements to determine which one should occur first. Another example
may be graphing algorithms across and across the graph. Both mentioned
algorithms have the same structure but only operate on other data structures. In
one of them the two functions push and pop work with stack, in the other with
queue. “Changing” these functions and leaving the algorithm completely
unchanged, we get different behavior o f the program.

In LISP, the function is a kind of object. By defining a function using
d e fu n in fact

• Create a new object representing the function

• and give the object a specific name.

After defining a function

>> (defun abc (x) (* 2 x))
==> ABC

with the operator fu n c t io n we can get the object representing it by writing

>> (function abc)
==> #<interpreted function ABC 21D11162>

Having an object representing a function, we can now use it to call it.
Common LISP provides two functions that use to call functions that represent

it: f u n c a l l and app ly . This two functions have different ways of passing

arguments to functions.

108

a) funcall

The f u n c a l l function is used when we know the number of arguments
that will be passed to the function called when the co>de is created. The first

argument of f u n c a l l is the name of the function object associated with the
function we want to call, while the remaining arguments are the arguments
passed to that called function. The following two lines are equivalent

(abc 1 2 3)
(funcall # 1abc 1 2 3)

b) apply

In many cases, the list of arguments is not constant, or even the number of

arguments is not known in advance. In this case, we should use a p p ly instead

o f f u n c a l l . The first argument to apply is the name of the function to be
called, and the second argument to the list.

>> (defun f (x) (+ 2 x))
= = > F
» (apply 'f '(5))
==> 7

The arguments for the function consist of the fast argument to apply
appended to the end of a list of all the other arguments to apply but the function
itself.

4 .6 . ANONYMOUS FUNCTIONS

When we begin to use functions treated as argument's to other functions, we
will soon be irritated with the need to define and caill functions only to be able
to use it only once. Avalanche names starting with) h e l p , tmp or similar can

very quickly ibsorb us. If it is tiresome for us to deffime d e fu n functions every

time, we can use lambda expressions.

(l a m b d a (p a r a m e t e r s) b o d y)

Lambda expressions can be thought of as fumethons whose name defines
their action.

109

>> (funcall (lambda (x y) (+ x y)) 1 2)
==> 3

The above can be written in even more compact form, treating lambda as a

function name

>> ((lambda (x y) (+ x y)) 1 2)
==> 3

Please note that the arguments can be the results of other function calls:

>> (funcall (lambda (x y) (+ x y)) (+ 1 2) (* 3 4))
==> 15

4.7. VARIABLES

4.7.1. Basic Messages

Common LISP is a dynamically typed language - that is, where errors
related to type mismatches are detected at program execution not at program
compilation.

One of the most elementary ways of introducing variables into a program
(omitting the variables listed in the parameter list in the function definition) is

to use the l e t operator of the form

(let (variable*) body-form*)

(variable*) is a list containing variables with a value assigned to them,

or variables themselves, if they have a default value of nil.

» (let ((x 10) (y 20) z)
(format t "Variables: x=~a, y=~a, z=~a" x y z))
==> Variables: x = 10, y = 20, z = NIL
NIL

As the value of the return, the value of the last expression is returned. The

scope of the variables introduced by l e t is limited by the expression itself. For
program like below

(d e f u n a b c (x) (l e t ((y 2))

(f o r m a t t " x = ~a y = ~ a " x y))

(f o r m a t t " x = ~ a y = ~ a " x y)))

I in

We receive warnings when we try to execute since for the last instruction

the variable Y is unbound.

>> (abc 1)
==> X=1
y=2
Debugger invoked on a UNBOUND-VARIABLE in thread #

CTHREAD "initial thread" RUN
The variable Y is unbound.
< . . . >

In this case, of course, there is no binding of the variable y in the second
call to the format function.

In LISP, as in other programming languages, we are dealing with variable
shadow when in the “internal blocks” a variable is defined with the same name
in “ external blocks” . This is confirmed by, for example., the following program

(defun abc (x)
(format t "Function: x=~a~%" x)
(let ((x 2))

(format t "Outer let: x=~a~%" x)
(let ((x 3) i

(format t "Inner let: x=~a~%" x))
(format t "Outer let: x = ~ a x))

(format t "Function: x = ~ a x))
which returns the following effects

>> (abc 1)

Function: x = 1
Outer let: x = 2
Inner let: x = 3
Outer let: x = 2
Function: x = 1
NIL

111

Similarly to l e t , l e t * works with the difference that in the definition of

variables you can refer to the variables that have already been defined. So you
can write

>> (defun abc (x) (let* ((y 20)
(2 (+ y 30)))

(list x y z)))
==> ABC
>> (abc 10)
==> (10 20 50)

but no

>> (defun abc (x) (let ((y 20)
(z (+ y 30)))

(list x y z)))
; (+ Y 30)

; Caught WARNING:
; Undefined variable: Y
<. . •>

Although a similar effect as using l e t * can be obtained by repeated use
l e t

>> (defun abc (x) (let ((y 2))
(let ((z (+ y 3)))
(list x y z))))

==> ABC
>> (abc 2)
==> (2 2 5)

4.7.2. Lexical variables

Common LISP has two types of variables: lexical and dynamic. By default,
in the Common LISP, all bound variables are lexically scoped variables. Based
on previous experience with imperative programming languages like C, Java
and Python, the lexical scope of variables can be explained as follows: all
references occurring in the area of the block in which the variable was defined.

Another explanation from [WebUnix02] is: Closure mean a subroutine that

holds some memory but without some disadvantages o f modifying a global

variable. Generally, closure is a way to associate a function and the

environm ent in which it is supposed to work The environm ent stores all objects

used by the function, not available in global visibility The implementation o f

the closure is determined by language as well as by com piler. By definition,

closures are mainly found in functional languages in w hich functions can return

other functions using variables created locally.

4.7.3. Dynamic variables

Local variables, or variables, whose scope of action is limited to only a
certain part o f the code for which they matter, are quite a good idea to put some
codes in a sense. Often, however, it is necessary ta use variables with no
boundaries and in fact each language has such “functionality” . In LISP global
variables are called dynamic variables or special variables and can be created in
two ways: using defvar and defparameter. In both cases, we first give the

variable a name, an initial value, and an optional description.

(defvar *abc* 1 "First global variable.").
(defparameter *def* 2 "Second global variable.")

In the case of defvar, the initial value is assigned to a variable only when

the variable is undefined (not bound) earlier, but using defparameter always

assigns the initial value to the variable. In addition., defvar can be used
without the initial value, which creates an unbound global variable. O f course,
we can use variables defined in one of the following ways (in any place), for
example.

(defvar *abc* 1 "A new global variable.")
(defparameter *def* 2 "Another globa.l variable.")
(defun myfun () (+ *abc* *aef*)l

And effect

>> (nyfun)

113

Mechanism of covering global variables made a variable binding to a value
that covers all previous bindings. We will try to illustrate this mechanism in the
following example

>> (defvar *d* 1)
(defun abc () (format t "d=~a" *d*))

==> *D*
>> (abc)
==> d = 1
NIL
» (let ((*d* 2)) (abc))
d = 2
NIL
>> (abc)
==> d = 1
NIL
>> (defun myfun () (abc)

(let ((*d* 2))

(abc))
(abc))

we get the same effect:
>> (myfun)
==> d=l d=2 d=l
NIL

We extend this example by changing the definition of abc function

(defun abc () (format t "d=~a~%" *d*)

114

(setf *d* (+ 1 «d*))

(format t "d=~a~%" *d*))

The function abc results are straight forward

>> (abc)

d=l
d=2
NIL

but the function my fu n gives the results

>> (myfun)

d=2
d=3
d=2
d=3
d«3
d=4
NIL'

4.7.4. Constants

Constants, often in colloquial expressions called constant variables, are
defined by keyword defconstant with the same syntax as the

defparameter described, i.e. start with a constant name, after that an initial
value, and end with optional description.

4.7.5. Assignments

Knowing how variables can be created, two further operations are natural:
reading (using) the current value of a variable and assigning it a new value.

115

Both of these operations were already performed, because without them it
would be difficult to give any examples. Referring to a variable's value simply
by giving it a name. Assigning a new value to a variable is accomplished using

the s e t f macro with the syntax

(setf varname value)

For example, assignment to variable x of value 1 is obtained by writing

(s e t f x 1)

O f course, according to the rules described earlier, binding the variable
following the assignment does not affect bindings in another “block” program.
That's why s e t f in function

(defun abc(x) (setf x 1))

in no way affect the environment as we find out by writing
» (let ((y 2)) (abc y) (print y))
==> 2

The good news in daily use of s e t f is the ability to make multiple

assignments. And so instead
(setf x 1)
(setf y 2)

it can be comnbined

(setf x 1 y 2)
Generalized assigning function:

Shorten formula Equivalent formula

(incf x) (setf x (+ x 1))

(decf x) (setf x (- x 1))

(incf x delta) (setf x (+ x delta))

(decf x delta) (setf x (- x delta))

4.8 . MACROS

M acros are somehow the layer o f abstraction over LISP's core, in a sense,

an interface for it By creating new macros we can indefinitely extend the

functionality of the language to adapt it to our needs and not interfere with its
most elemental mechanisms at the same time.

It turns out what we will see at the beginning is that constructs known from
other languages as basic or forming the core (such as conditional statements)
here do not define language (or at least they do not).

4.8.1. and, or , n o t instructions

Shorten formula Value

(not nil) T

(not (= 1 1)) NIL

(and (= 1 2) (= 3 3)) NIL

(or (= 1 2) (= 3 3)) T

4.8.2. i f , when and u n l e s s instructions

The LISP form for conditioning instruction i f is:
(if condition then-form [else-foim])

(i f (> 2 3) "X" "Y") returns “Y”

(i f (> 3 2) "X" "Y") returns “X”

(i f (> 2 3) "X") returns NIL

or in general:
.(if. $c,or>dition)

(form 1) (form 2))
By using macra, we can defme new forms of conditioning instructions as:

(when (condition)
(form 1) (form 2))

(unless (condition)
(progn (form 1) (form 2)))

(defrracro when (condition Srest body)
'(if /Condition (progn ,@body)))

(defmacro unless (condition Srest body)
' if (not ,condition) (progn ,@body)))

117

4.8.3. c o n d instruction

We can write a multi-level conditioning instructions as follow:

(if a (do-x)
(if b (do-y) (do-z)))

But we can use another equivalent way with the cond instruction:

(cond
(test-1 form*)

(test-N form*))

Hence the equivalent of the above “nested” ifs

(cond (a (do-x))
(b (do-y))
(c (do-z)))

4.8.4. d o l is t , d o tim es instructions

a) d o l i s t

(dolist (var list-form)
body-form*)

Example:

>> (dolist (x (list 1 2 3 4 5)) (print x))
==> 1 2 3 4 5
NIL

Or equivalent code:

>> (dolist (x ' (1 2 3 4 5)) (print x))
==> 1 2 3 4 5
NIL

>> (dolist (x ' (1 2 3 4 5))
(print x)

(if (eq x 3)
(return)))

IS

NIL

b) dotimes
(dotimes (var count-form)

body-form*)
Example:

>> (dotimes (i 5) (print i))
==> 0 1 2 3 4
NIL

4.8.5. do instruction

As presented above, d o l i s t and d o t im e s are nothing more than
“wrapping” macros as a more general macro that is. These instructions allow
you to associate any number of variables and control them for subsequent
iterations. In addition, we can specify a loop termination condition and an
expression whose value will be returned after it terminates.

(do (variable-definition*)
(.end-test-f orm result-form*).
statement*)

Each v a r i a b l e - d e f i n i t i o n * is an expression

tvar init-form step-form)

The s t e p - fo r m part is optional - if it's missing, the variable must be

explicitly changed inside the loop. If no i n i t - f o r m is specified, the variable

has a yalue of. n i l . The evaluation of the expression e n d - t e s t - f o r m in each
iteration takes place after assigning new values to the variables.

As long as its result is n i l the s t a t e m e n t * is executed. Evaluating it to

t r u e involves evaluating the r e s u l t - f o r m * and returning the result o f its last

expression as the result o f the loop do.

The s t e p - f o r m expressions are calculated in order o f occurrence before

any assignment occurs, which can be used when writing a program calculating

the 20-th element o f the Fibonacci sequence

3

119

(do ((n 0 (1+ n))
(cur 0 next)
(next 1 (+ cur next)))

((= 20 n) cur))

is equivalent to the dotimes loop that prints integers from 0 to 4

(dotimes (i 5) (print i))

recorded using the loop to may look like the following

(do ((i 0 (1+ i)))
((>= i 5))
(print i))

4.8.6. l o o p instruction

The basic loop syntax is

(loop body-form*)
This is probably the simplest possible way to visualize a loop that iterates

through body-form* until it executes return. For example, the equivalent o f an
earlier loop to print 5 numbers from 0 to 4 may look like this

(loop for x in '(0 1 2 3 4) do (print x))

However, this extended syntax of the loops shows what we really are
dealing with. A loop is quite an unusual “creation”, while the ideal example

shows the possibilities of macros. In a sense, the loop breaks with LISP's

standard syntax, which results in not being accepted by everyone. In general,

the loop, instead of “a lot o f stupid parentheses”, operates on a readable,
practically for everyone, way of writing. Thanks to this, tasks such as counting,
summing up or going through all the elements o f the list are “off the shelf’.

Let's give some more examples.

• Create a list containing integers from 1 to 5

>> (loop for i from 1 to 5 collecting i)
==> (1 2 3 4 5)

• Iterate through two lists in parallel, and cons up a result that is returned

as a value by loop.

» (loop for x in '(a b c d e)

120

for y i n '(0 1 2 3 4)
collect (list x y))

==> ((AO) (B 1) (C 2) (D 3) (E 4))

• Iterate through a list, and have an i f instruction:

>>(loop for x in 1(0 1 2 3 4)
for y from 1

if (> y 1) do (format t ", ~A" x)
else do (format t "~A" x))

0, 1, 2, 3, 4
NIL

• Sum the first 5 values of the expression
>> (loop for x from 1 to 5 summing (expt x 2))
==> 55

• Counting the number of occurrences of the letter “o” in the text:
>> (loop for x across "The quick brown fox"

counting (find x "o"))
==> 2

• Calculate the 7th element of the Fibonacci sequence
(loop for i below 7

and a = 0 then b
and b = 1 then (+ b a)
finally (return a))

==>"13

This way the lo.op shows the power of the macros. In. this case, the macros
were used to extend the basic syntax of the language, without affecting its
remaining features. The loop keyword is analyzed according to its specific
syntax, but the rest of it is nothing else than typical LISP expressions. What

also important lc o p all the time remains “only” macros - it is not the core (or
core) o f the language.

4.8.7. Understand m acros

Macro we define with defmacro

121

(defmacro name (parameter*)
"Optional documentation string."
body-form*)

As in d e fu n we have a name, a list of arguments, an optional description,

and a body of expressions.

Although programs call macros exactly the same way as functions, their
behavior (macros) is quite different. The body does not return a value, but the

LISP expression, which will later be evaluated. Macro arguments are not

subject to echoes. Therefore, passing a list to the macro (* 2 (+ 3 4)) , the

argument in the macro body will always be a list (* 2 (+ 3 4)) and not a

value o f 14. The following simple macro

(d e fm a c ro s q u a r e (x)

' (* , *))

can be understood as follows: Every time the preprocessor encounters in the
code the (sq u a re X) replaces it with (* X X) .

The key to understanding macros is knowing the difference between
generating code and executing code (program). By writing a macro, we write a
program that will be used by the compiler to generate the code that will be
compiled. The program will execute only if all the macros are expanded and
replaced with the code to be compiled. Moment o f operation of macros is also
called macro expansion time, to distinguish between the execution o f the code
written by programmers and the code generated by the macros.

This distinction is important in that when developing a macro, it is not
possible to manipulate data that will exist during execution,

program
(defun abc (x)
(when (> x 10) (print 'big)))

will trigger the macro

(defmacro when (condition Srest body)
'(if ,condition (progn ,@body)))

which generates the following code

(i f (> x 10 (p r o g n (p r i n t ' b i g)) '

It is important to note that LISP (depending on the implementation) car
develop macros at different times.

• The macro can only be expanded once during compilation.

• Macro can be developed during first use.

• The macro can be expanded whenever it is used.

Well written macro should work in any of the above situations.

4 .9 . LISTS DATA STRUCTURES

Lists are some kind of abstraction over instances of objects grouped iito
pairs so-called cons cells as they use the cons function to create them.

>> (cons 1 2)
= = > (1 . 2)

Two objects that make up the cell cons are called c a r and c d r

>> (car (cons 1 2))
==> 1
>> (cdr (cons 1 2))
==> 2
>> (setf (car *cons*) 3)

10
» ^cons*
(3 . 2)
>> .(^etf (cdp *conjS*) 4).
4
>> *cons*
==> (3 . 4)
* (cons 1 nil)
(1)

* (cons 1 (cons 2 nil))
(1 2)

Common other list manipulation functions are described as below.

123

a) c a r and cd r

List can be processed by the functions car and cdr:
• car returns the first element of a list

• cdr returns the rest of a list after the first element.

(car ' (a b c))
==> a
(cdr '(a b c))
==> (b c)

b) append instruction

append makes a new list consisting of the members of its argument lists
all together.

(append ' (a) '(b))
==> (a b)
(append '(a b) '(c d) '(e f g))
==> (a b c d e f g)

c) re v e rs e instruction

r e v e r s e makes a new list that is the reverse of the input list.

(reverse ' (a b))
==> (b a)
(reverse '((a b) (c d) (e f g)))
==> ((e f g) (c d) (a b)

d) le n g th instruction

l e n g t h returns the length of the input list.

(length ' (a b))
==> 2
(length '((a b) (c d) (e f g)))
==> 3

i 2 4

e) s u b s t ins truc tion

s u b s t makes a new S-expression (not just a list) with a specified
substitution.

(subst 2.0 'a '(* a 5))
==> (* 2.0 5)
(subst 'alpha 'name '(The selected character is name))
==> (The selected character is alpha)

4 .10 . EXAMPLES OF LISP PROGRAM

4.10.1. Insert-sort in an array

Similar to the example of Insert-sort implementation presented in
PROLOG program in chapter 3, the i n s e r t _ s o r t algorithm can be
implemented in LISP as follow:

(defun insert (item 1st «optional (key # ’<))
(if (null 1st)

(list item)
(if (funcall key item (car 1st))

(cons item 1st)
(cons (car 1st)

(insert item (cdr 1st) key)))))
(dffun insert-sort (1st Soptional (key # ’<))

(if (null 1st)
1st
(insert, (.car 1st) . , .

(insert-sort (cdr 1st) key) key)))
(insert-sort ' (1 4 2 4 5 1 3 0))
= = > (0 1 1 2 3 4 4 5)

4.10.2. Sorted Binary Tree

LISP has no such structures like tree. LISP is a list or at best a list of lists.
It is really how the program interprets the nested list of lists that makes the list a
binary or a n-arv tree. We can present the solution modified from [Abelson96],

125

In this version a node of a binary tree is represented as (k e y l e f t

ig h t) so

key -> (car tree)
left_branch -> (cadr tree)
right_branch is -> (caddr tree)

Here is the code to access these 3 elements of a node:

(defun key (tree) (car tree))
(defun left-branch (tree) (cadr tree))
(defun right-branch (tree) (caddr tree))

/ / C r e a t i n g n o d e i n a b i n a r y t r e e

(defun make-tree
(keynode leftBranch rightBranch)
(list keynode leftBranch rightBranch))

// I n s e r t i n g a n e l e m e n t i n t o t r e e

(defun add (x tree)
(cond ((null tree) (make-tree x nil ril))
((= x (key tree)) tree)
((< x (key tree))

(make-tree (key tree) (add x (left-branch
tree)) (right-branch tree)))
((> x (key tree))

(make-tree (key tree) (left-branch tree) (add
x (right-branch tree))))))

/ / C r e a t i n g a t r e e f r o m a l i s t o f e l e m e n t s

(defun create-tree(elmnts)
(dolist (x elmnts)
(setf tree (add x tree))))

//Creating an empty initial tree
(setf tree nil)

Example:

>> (setf tree nil)
==> NIL
>> (setf 1st (list 2 1 15 10 12 4 8 3 9 7))
==> (2 1 15 10 12 4 8 3 9 7)
>> (create-tree 1st)
==> NIL

We can display the resulted tree
>> tree
==> (2 (1 NIL NIL) (15 (10 (4 (3 NIL NIL) (8 (7 NIL

NIL) (9 NIL NIL))) (12 NIL NIL)) NIL))
This can be represented in the formal form as

Figure 4.1. An example o f Sorted Binary Tree structure

For the binary sorted tree, we can define 3 types of traversals

(defun ir.order (tree)
(cond ((null tree))
(t (inorder (left-branch tree))
(print (key tree))
(inorder (right-branch tree)))))

127

(defun preorder (tree)
(cond ((null tree))
(t (print (key tree))
(preorder (left-branch tree))
(preorder (right-branch tree)))))

(defun postorder (tree)
(cond ((null tree))
(t (postorder (left-branch tree))
(postorder (right-branch tree))
(print (key tree)))))

Running results:

>> (inorder tree)
1
2

3

4

7

8

9
10
12
15
>> (preorder tree)
2
1
15
10
4
3
8

7

Q

; : s

>> (postorder tree)
1
3
7
9
8

4
12
10
15
2

2

4.10.3. Hanoi Tower implementation

The Hanoi Tower problem can be solved in the recursive algorithm as
follow: To move all the N disks from tower 1 (named as fromT) to tower 3

(name as destT) using the tower 2 (name as buffT) as the buffering tower we
can:

• Move the first N -l disks from fromT to buffT using the destT as the
buffering tower.

• Move the N-th (largest) disk from fromT to destT

• Move the first N -l disks from buffT to destT using the fromT as the
buffering rower.

W ith-this algorithm, first we need to define some data structure: The
solution here is based on the lecture [WebFong], In this example we represent a
disk by a number, so that the i-th disk is represented by number / (the smallest
disk has number 1. the biggest disk has number N). Second, we represent a
tow er by a list, which will contain the numbers corresponding to the disks of
the tow er starting from the top to the bottom.

;; A tower is a list of numbers

(defun mcke-empty-tower ()
"Init ¿n empty tower."

12

129

nil)
(defun tower-push (towerNo diskNo)

"Add new disk diskNo to (on top of) the tower
towerNo. "

(cons diskNo towerNo))
(defun tower-top (towerNo)

"Get the top disk of tower towerNo."
(first towerNo))

(defun tower-pop (towerNo)
"Remove the top disk of tower towerNo."
(rest towerNo))

Next, we define the hnTowers data type to represent the 3 towers of the
game. Its constructors and selectors are given below:

;; HanoiTowers configuration
(defun make-hn (fromT buffT destT)

"Create a Hanoi Towers from three towers."
(list fromT buffT destT))

(defun hn-tower (hnTowers i)
"Select the i-th tower of a hnTowers."
(nth (1- i) hnTowers))

We write the calls to recurring operations:
;; Utilities

(defun hn-tower-update (hnTowers i towerNo)
"Replace the i-th tower by tower towerKo."
(cond ((= i 1)

(make-hn hnTowers (second hnTowers)
(third hnTowers)))

((= i 2)
(make-hn (first hnTowers) towerNo

(third hnTowers)))
((= i 3)
(make-hn (first hnTowers) (seconi hnTowers)

towerNo))))

daiun hn-tower-top (hnTowers i)

(tower-top (hn-tower hnTowers i)))

(defun hn-tower-pop (hnTowers i)
"Pop the top disk of the i-th tower."
(hn-tower-update hnTowers i

(tower-pop (hn-tower hnTowers i))))

(defun hn-tower-push (hnTowers i disk)
"Push DISK into the i-th tower."
(hn-tower-update hnTowers i

(tower-push (hn-tower hnTowers i) disk)))
The fundamental operator we can perform on a Hanoi configuration is to

move a top disk from one tower to another:

;; Operator: move top disk from one tower to another
(defun move-disk (fromT destT hnTowers)

"Move the top disk from tower fromT to tower destT
in hnTowers"

(let ((disk (hn-tower-top hnTowers fromT))
(temp-hn (hn-tower-pop hnTowers fromT)))
(hn-tower-push temp-hn destT disk)))

w* are now ready to capture the logic of our recursive solution into the
following code:

) i. Hiving, a tower from one tower to another
(defun move-tower (N fromT buffT destT hnTowers)
•"Move the top-N-1 disks from- fromT- to destT."
(if (= N 1) (move-disk fromT destT hnTowers)

(move-tower (- N 1) buffT fromT destT
(move-disk fromT destT
(move-tower (- N 1) fromT destT buffT

hnTowers)))))

W e use the finction s o l v e - h n to start the recursion:

; ; Start function
(defun sclve-hn (N) "Solution of the Hanoi Tower."

"Return the top disk of the i-th tower."

131

(move-tower N 1 2 3 (make-hn (make-full-tower N) nil
nil)))

(defun make-full-tower (N)
"Create a tower of all N disks."
(make-full-tower-temp N (make-empty-tower)))

(defun make-full-tower-temp (N towerNo)
"Push all N disks on top of tower towerNo."
(if (zerop N)towerNo

(make-full-tower-temp (1- N)
tower-push towerNo N))))

(trace move-disk)

To solve a Tower of Hanoi problem with 3 disks, we call (s o l v e - h n 3):

» (solve-hn 3)
0: (MOVE-DISK 1 3 ((1 2 3) NIL NIL))
0: returned ((2 3) NIL (1))
0: (MOVE-DISK 1 2 ((2 3) NIL (1)))
0: returned ((3) (2) (1))
0: (MOVE-DISK 3 2 ((3) (2) (1)))
0: returned ((3) (1 2) NIL)
0: (MOVE-DISK 1 3 ((3) (1 2) NIL))
0: returned (NIL (12) (3))
0: (MOVE-DISK 2 1 (NIL (1 2) (3)))
0: returned ((1) (2) (3))
0: (MOVE-DISK 2 3 ((1) (2) (3)))
0: returned ((1) NIL (2 3))
0 : (MOVE-DISK 1 3 ((1) NIL (2 3)))
0 : returned (NIL NIL (1 2 3))

(NIL NIL (1 2 3))
From the trace we can actually read off the seqience of operator

applications necessary for one to achieve the solution configuration.

Chapter 5: Al AND GAMES

In today's computer games, where graphical effects and physics simulations
have already reached a very high level, artificial intelligence is gaining in
importance. It is often used in games that are not scheduled in advance, and the
game play is decided by the players. Great game play approach becomes more
interesting, less predictable and schematic, which increases the popularity of the
game and the satisfaction of the players. We are particularly interested in
artificial intelligence in computer games. At the same time, the demands of the
players grow, and this contributes to the emergence of new, better, more
interesting and effective solutions. This is why artificial intelligence in
computer games is becoming increasingly important. Its task is not only to
create and control the environment surrounding the player character, but also to
control the physiology and psychology of the character itself, which forces the
player to become more involved in the game. The basic purpose of artificial
intelligence algorithms is primarily to make the game more interesting and
attractive to the computer player.

To this day, the most accomplished in this field are Half-Life Commanders
and opponents in F.E. A.R. But as practically every thing in the world, artificial
intelligence somewhere had to start.

5 .1 . INTRODUCTION

Game ’development lives in its own technical world. The style of
programming in a game is still very different from that in any other products
development. Games focus on speed, but it's different than programming for
embedded or control applications Games focus on optimized algorithms, but it
doesn’t share the same ideas as database server systems. This chapter presents
about the application of AI in game development Artificial Intelligence
mechanisms are currently used in many gam e genres in which we deal with
opponents, as wtll as with various phenomena, real-world objects. Therefore,

133

they are widely used in strategic games (including combat simulations, crowds),
as well as in standard shooters for modeling enemy behavior,...

The first was Alan Turing in 1951 with the famous Turing test. The test
was based on a simple human game, where the judge talks to two people asking
them questions. Based on the questions, it is to determine the gender o f the
person. In the Turing version, the judge speaks to a person and machine in a
natural language (a language understood by people as we use every day). The
machine passes the test when the judge can not determine which of the callers
would be the machine. The test was generally quite controversial and many
researchers did not take it seriously.

In the year 1952 Arthur Samuel entered the action. An IBM developer has
developed his own learning algorithm for checkers. His algorithm did not check
every possible move. Samuel has developed a function to evaluate the chance of
winning based on several variables such as the position o f the pawn, the number
o f pawns on both sides, etc. Artificial Intelligence tried to make such moves to
optimize the value of the function. In 1954, Artificial Intelligence defeated the 4
best US players in checkers.

So far, we have already listed two pioneers in the field o f artificial
intelligence, but by 1956 no one had ever used the term “artificial intelligence”.
It was designed by John McCarthy at a conference in Dartmouth. More
precisely, it was the English term “Artificial Intelligence”. McCarthy also
proposed LISP, and was awarded the Turing Award for his contribution to the
development of AI.

Another important step in the development o f computer in.elligence was in
1967, in which Richard Greenblatt created his MacHack program. The program
was created at MIT and became the first computer program that has taken part
in chess tournaments, it is also the first software that defeated i living man in a
chess match It is interesting that MacHack became an honorary member o f the

Massachusetts State Chess Association.

Since then, the development of artificial intelligence in ganes has stalled a
bit. Available equipment was not too fast. It was these technical limitations that

made the development of intelligent opponents a little stop. There were
artificial intelligence games, but it was plainly simple and painfully predictable.

From the late 1950s through to the early 1980s the main AI research
concentrated on “symbolic” systems. A symbolic system has two main
components: a set of knowledge (represented as symbols such as words,
numbers, sentences, or pictures) and a reasoning algorithm to create new
combinations of symbols or new knowledge. A reasoning algorithm consists of
searching: trying different possibilities to get to the result.

An AI system should have a large database of knowledge and known
reasoning rules to discover new things. For games, there were different
symbolic such as blackboard architectures, path finding, decision trees, state
machines, and steering algorithms.

Until the early 1990s, there were increasing problems with symbolic
approaches. First, the early successes on simple problems didn’t seem to scale
to more difficult problems. It might be easy to develop AI that understands
simple sentences, but understanding a full human language was not possible.
Second, from a philosophical viewpoint, symbolic approaches weren’t
biologically ' plausible. You can’t understand the way a human being does
something by using a symbolic algorithm without any supporting knowledge.

The effect was a move toward natural computing: techniques inspired by
biology ; i r other natural systems. These techniques include neural networks,
geneticalgorithms, fuzzy logic,...

5 .2 . GAME AI

Pacman [Midway Games West, Inc., 1979] was one of the first game

played with AI. Pacman has definite enemy characters that seemed to co­

operate against you, moved around the level just as you did, and try to catch
you in the natural way

Pacman relied on a very simple AI technique: a state machine. Each of
the four monsters (later called ghosts) was either chasing you or running away.

135

At each junction they took a semi-random route. In chase mode, each had a
different chance of chasing the player or choosing a random direction. In run
away mode, they either ran away or chose a random direction. All were very
simple. Game AI didn’t change much until the mid-1990s.

Take a classic like Golden Axe [SEGA Entertainment, Inc., 1987], This

game had a neat innovation with enemies that would rush past the player and
then switch to homing mode, attacking from behind. The AI level was only
slightly higher comparing to Pacman.

At another significant event in the development of artificial intelligence in
computer games we waited until 1994 and Warcraft games. Studio Blizzard

has been tempted to apply advanced track search algorithms In the case of the
RTS game, where multiple units are displayed at once, it was a bold move that
proved to be a huge success. Agents were able to move :he area, avoiding
obstacles and each other. Already then the path search algorithms themselves
were nothing extraordinary. What impressed here was how many units at once
could use this capability.

In 1996 we are back in chess. In the world, it has becone loud because of
the Deep Blue computer created by IBM. The machine sai down to a chess
party with world champion Garri Kasparov. In the first clash the computer won
once, but later lost 3 games and 2 draws, so the general aided 4: 2 for the
Russian. After a year of additional work on the system, thee was a rematch.
This time the machine won 3.5 to 2.5.

Goldeneye 007 [Rare Ltd., 1997] probably did the mcst to show gamers

what AI could do to improve game play. It added a sense sinulation system: a
character could see their colleagues and would notice if they vere killed.

The first game whose intelligence was praised in the growl world was
released in 1998 by Valve Half-Life. He did not ust any outstanding

techniques, but introduced intelligence to a new level. One cf the enemies that
came up was the commandos. What made them stand out fron other opponents
was the fact that they were able to cooperate with each other shield each other
flank the player, etc.

13<>

The AI in most modern games addresses three basic abilities: to move
characters, to make decisions, and to think tactically or strategically.

In the same year also appeared Thief game produced by Looking Glass
Studios. Developers focus here on a slightly different aspect of artificial
intelligence, which are the sensors. Because if an AI object is unable to pick up
stimuli from the environment then it is worthless. At Thief the guards
responded to the sounds and light.

The next important step came quite quickly, because already in 1999, due

to the study of Digital Extremes, which unveiled the Unreal Tournament.
The key element here was the bots that were able to learn from the player. This
is a mechanism used today in many multiplayer games, where we deal with
bots. The game looks at the way players live and tries to use similar patterns of
movement or good space for hiding.

Another bold step in AI development took place in 2000, and more

specifically in Colin McRae Rally 2. 0. This was the first game using a
neural network The game collected data based on the player's driving style. AI
was based on two data - the driving line and the driving model. The first data is
the line of optimal driving track, the second is determined by the speed, type of
pavement etc. Using the drive model data, the computer tried to hold the line as
much as possible By adding to the knowledge gained from the player, AI could
becom e a better criver

Also in the \ear 2000 Maxis introduced The Sims, a first time system of
needs - where ou' character was hungry, needing to wash or use the toilet. Not
much, agents we e able to make a relationship, th e re was also an interesting
system where smart objects were used. i.e. the character as such was unable to
use various items This item informed our sims how it should be used. Later, a
sim ilar solution will be used by the Monolith team working on AI to play
F E A R .

A year late-, B la ck & W hite appeared at LionHead Studios. The
programmers deeded to create a very interesting project, which was a retreat. A
pet had learned taw to behave Its development was based on “strengthening” .

137

So we could praise him for good behavior and punish him for his bad behavior.
A well-trained hound, he could have been a great help when the ill-trained

could have been more disturbed. Again, when we sent him conflicting signals,

his behavior became chaotic and difficult to predict. The Black & White
project was the first project where artificial intelligence learned in real time
during the game. The idea came back in 2005 with the second part of the game.

In addition to the Black & White sequel, in 2005, the game was

launched by F.E.A.R of Monolith Productions. To this day, artificial
intelligence in this game, is considered one of the most advanced. Opponents
after classic behavior like hiding, shooting for a player, or searching for him in
case o f loss o f visual contact, show team behavior, i.e. when one of the team
members changes position to fling the player, the rest o f the team is covering
him. Opponents do not attack only the simplest line o f resistance, but they can
also fling or attack the player from behind. They use grenades and field guards.

A special milestone is November 2015, when Google unveiled its
AlphaGo. The game has long been a serious challenge for artificial
intelligence. The best chess players have been championing for two deeades
(the first was the Deep Blue computer created by IBM - in 1997 life defeated
Garry Kasparov), but this ancient board game from the Far East haslong been a
problem for machines to overcome.

The rules o f the game are simple. On the perpendicular lines o f the board,
players alternately place white and black stones (stones). The object o f the
game is to occupy as much territory as possible and surround your opponent
with as many stones as possible. However, the number o f possible moves is
enormous.

The chess player can choose from nearly 20 moves in every move. The
average player plays in 150 moves, which means 10170 (the one with 170
zeros) of possible stones on the board! This is an unbelievably large number,
larger than all the atoms in the universe, which is “only” 108(1. As a result, even
the best supercomputer is not able to deal with all variants of the game.

P 8

This game was one of the biggest challenges for artificial intelligence.
Chess or checkers have long been losing people, but the human mind still has
an advantage in playing it Until the introduction of AlphaGo, a computer

program, created by scientists from Deep Mind (Google's daughter company).
AlphaGo defeated the legendary champion Lee Se-dol in the first of five games
played in Seoul, South Korea. Lee surrendered after 3.5 hours. This was the
first game of the five series to be played. The match is 1 million USD prizes,
and o f course pride of man.

“I was very surprised,” Lee said, surprised just after the game. - “I did not

expect to lose. I did not think that AlphaGo would play so perfectly” .

AlphaGo has already demonstrated its power when he defeated the

European champion Fan Hui in 2016. AlphaGo won 5:0! But Hui has only the
2nd master degree dan. Lee has the strongest, professional grade 9th and is
considered one of the top two players in the world.

“I do not regret that I took on a computer challenge,” Lee says. “I admit,
I'm in shock, but what happened has happened. Now I'm getting ready for the
next batch” . The Master wants to inmrove his onenine. because he believes that

this weak start lost him. But even if you win the next parties with the program,
it seems that the days of human supremacy are counted.

A lphaG o does quite well. It reminds o f the structure of the neuron
network, that is, acts like the brain. It strengthens the connections between
artificial neurons through examples and gained experience. Instead o f trying to
predict (calculate) the best moves for several dozen turns forward (it would take
the computer very long time), programmers have equipped him with an
algorithm that allowed him to learn the best strategy, just as people do it - by
training. The solution DeepMind suggested would be a hybrid on every level.

AlphaGo consists of two deep neural networks (DNNs) that find promising
m oves and determine whether they are worth the price. Neural networks have
revolutionized artificial intelligence in recent years, but even they themselves
have not been able to defeat the game of Go. Therefore, beside the neural
network, AlphaGo uses Monte-Carlo Tree Search to choose the right step.

1 3 9

The program first analyzed more than 30 million items from the games
played by the masters, collecting information about the state of the game in the
same way that image recognition programs analyze them based on a set of
pixels. Then he played parties with himself on 50 computers, gaining more and

more skills. Part of the teaching process of AlphaGo was hybrid. One

subsystem was trained by human experts, which was then used to play with the

other subsystem. In this way, AlphaGo quickly understood the rules o f the
game and made possible moves and then played thousands of times with
himself, grinding his skills.

Demis Hassabis, head of Deep Mind, claims that the program has an
intuitive understanding of what moves on the board in it are beneficial and can
make long-term decisions on that basis. He had a strategy game he learned
himself.

Tobby Manning of the British Go Association, who had judged the
previous duel with the European champion, said that the only difference
between a human player and a computer was the time when they were thinking
about the next move. The computer did it faster.

5.3. A PROPOSED MODEL OF Al MECHANISMS FOR GAME

Artificial intelligence in computer games is used primarily to simulate
human behavior and to automatically raise the difficulty o f games. The artificial
intelligence technology used in games is designed to create as most closely
related to real behavior and events mapping reality.

The use of artificial intelligence in computer games can be divided into
three categories:

• Reality of the game world: mainly used in CRPG (Computer Role-
Playing Games). AI is responsible for controlling the actions o f the
agents (characters controlled by the game) with which the player's hero
is encountered.

140

• Battle Support: The most common category of artificial intelligence in
computer games - mainly in strategy games and so-called shooters. AI is
supposed to automatic control agents during combat.

• Commenting on events - most often in sports games. AI is responsible
for commenting on events taking place in the game world based on
current player actions.

Innovative artificial intelligence solutions in computer games are
constantly being refined to make the decision-making processes of the
computer better and more error-free. Thanks to the solutions based on modern
solutions, the existing possibilities have been expanded, creating more
interesting and engaging games that are as close to the real world as possible.

Most modem computer games use at least several different algorithms.
Otherwise, the behavior of the AI while moving from one place to another is
calculated, and decisions are made in combat or conversation. The gameplay
also changes the behavior of the system - strategic or logical games do not use
methods used in arcade games, and in racing games to conduct dialogues.

Here are some popular algorithms, in which simulation of human behavior
and use of adaptive capacity by computer system is possible:

• solving decision problems,

•' treating an action plan,

• strategic planning.

Algorithms of this type include: A*, herd algorithm, finite state machines,
decision trees. Other types include heuristics, neural networks,, fuzzy logics,

5.3.1. The A* algorithm

The A* algorithm is a widely used algorithm in games for searching paths
(or for “path finding”). In games, it is often used to control the character from A
to B via a network of nodes. When defining a route, it does not look for a “blind
path”, but it estimates the best direction of exploration. The algorithm calculates
the fastest and most effective connection between nodes, removing at the same
time the unavailable nodes due to various reasons (for example part of the wall,

141

the node is occupied by another character,...). When the examined location
turns out to be the target sought, the algorithm terminates, otherwise it
remembers the adjacent locations so that they can be checked in the future.

An unquestionable disadvantage of this algorithm is its predictability - if
we do not use any other methods or algorithms to calculate paths, the player can

quickly see the AI principle and then easily deceive it. Such is the “Hi tman”

series of games (2000), where the player takes on the role o f a paid killer. The
game uses many complex algorithms to simulate crowd reactions and individual
enemies to preserve the protagonist. It is worth noting that AI used in this case
during the chase is quite predictable, so that a player with good reflexes and
accuracy can get rid of virtually all enemy meals and complete his mission
without problems. The situation seems to be comic, but the blame for this is the
underdeveloped intelligence of the enemy.

Another example o f the use of the A* algorithm is “f . e . a . r . ” (2005). In

a fight the player is set before a very intelligent enemy - AI can decide when it
pays to risk dropping a position, and when it is better to blindly shoot from
behind the guard. There are also examples of cooperation - when one of the
enemies tries to change their position, the other shields him by firing the player.
Also much better than the other games of this type, it also turns out to be
“pathfinding” .

5.3.2. Herd algorithms

The herd algorithm was first demonstrated in July 1987 by Craig Reynolds
in Computer Graphics. The herd algorithm gives the group a realistic set of
collective behaviors, where combining a few relatively simple rules can

simulate very complex herd behavior. It serves as a realistic representation of
collective behavior, such as a flock of birds, a shoal of fish or a crowd.

According to Craig, this algorithm controls four assumptions:

• resolution - control prevents the creation o f crowds, local clusters in one
place (each unit in the crowd must maintain a certain distance apart to

avoid collisions),

1

• leveling - it is possible to change its speed and direction of movement
and adapt it to other units,

• cohesion of the group - control o f the gathering of agents staying close
together in local groups,

• avoidance - collision avoidance / collision control.

Result of the aforementioned action. The algorithm is a flock moving with
the same dynamics of movement as one body, avoiding all obstacles and hostile
characters. Initially, the algorithm was used in bird flight simulations, with time
being used in strategic games like “ W a r c r a f t” (1994) and “Command &

Conquer” (1995). They were one of the first games where artificial intelligence

was used in real time on multiple units simultaneously (characters were able to
move in the same direction without interfering with each other, changing the
direction of the march, and avoiding obstacles encountered in a very short
time). Over time, the algorithm has been modified so that the player can decide
on the shape and behavior of the flock. In the role-playing games “B a l d u r ' s

G a te ” and “ i c e w i n d D a l e ” a player who directs a team of heroes who travel
together in solidarity at any time can change the way they move and form
depending on their needs and team composition. The algorithm allows for an
instant response to the situation.

5.3.3. State machines

Another example of the use of AI technology in games is finite state
machines. In the games of the 90s, this technique was used to control agents,
but in-the latest releases, finite state machines are used to control AI games.
They are often used in role-playing and strategy games, mainly for controlling
players' dialogues with agents and interacting or managing the world. They
store the state of the game, process commands from the player, or manage the
state o f the object. The finite state machine consists of a set of “states” that are
in a given game space. Depending on the event, the transition to a different state
changes and the way you interact with the player changes. An excellent

exam ple is the “F a l l o u t " series, known for its rich world and almost living AI
characters. The player has a major impact on the world around him, and

depending on his actions, the world changes. Pretty extreme example from the
third part of the series is the town Megaton, which was built around the
unexploded bomb. The player has a number of opportunities and situations
related to this town - helping the residents, disarming the bomb and gaining the
trust o f the sheriff or activating the bomb and contributing to the destruction of
the city.

5.3.4. Decision trees

Another method of preparing fight in different types of games is decision
trees. They are used in the simplest situations like “Is this a close player? If
Yes, hitting, If no, approach”,... as in more complicated decision-making like
“If the enemy is close but more than 5 meters away, see where his comrades
are”, or “If they are closer than 5 meters from him, use this skill”,...

The decision tree is presented in the form o f a decision graph and their
possible consequences, the nodes o f which are the state of the game, and the
child nodes are the positions obtained after one move. The decision nodes and
consequent nodes are alternating, and each path ends with an end node. The
agent analyzes the decision tree as far as it can or considers it necessary,
considering all possible moves against the present situation - and chooses which
decision tree is the best. This method works best for uncomplicated, 3-4 step
situations, for more complex entertainment and higher AI levels, it is harder to
optimize. Its use is in the role-playing computer game (CCRPG), where the
player controls most often a hero (or team) moving in a fictional world, and
turn-based game play makes even the most complex calculations need not be
done in time real.

5.3.5. Graph algorithms

The artificial intelligence mechanisms commonly used in computer games
also include graph algorithms. Graphs are often used as a representation o f the
world of the game, to reduce the complexity and amount of detail that are often
irrelevant from the point of view of Al-controlled forms

J 4 4

a) Road planning problem

The problem of finding a road appears very often in real-time strategies, as
well as in other types of games controlled by the computer. It usually consists
o f finding a route from A to B at a minimum cost. The costing function most
often takes into account the distance to the destination, but it can also take into
account the terrain (mountains, swamps), the presence of opponents and
obstacles.

b) Representation of the game world

Due to the computational and memory complexity of road finding
algorithms, different types of game representation techniques are used to
accelerate the calculations.

Rectangular or hexagonal mesh is often used in strategic games. This is a
simple technique for implementation, because the site is represented by the
same elements. This method, however, has a drawback: characters moving
around the terrain look, as if they were moving around the chessboard. In
addition, this representation can introduce many redundant elements, for
example a meadow occupying a larger area is represented by many small cells
instead o f one larger, which often leads to slower route calculation calculations.
This problem can be solved by the use of four trees that group uniform areas
into one larger.

Methods for representing more irregular areas include the convex polygon
and visibility points The first technique allows for a comfortable and efficient

presentation of the terrain* but usually requires additional effort .for. level,
designers. The second method also reduces the size of the searched area, but
may cause objects to move along obstacles.

Due to the numerous advantages and disadvantages o f the above methods,
it is difficult to find a universal technique of representation of the game world,
which allows for an optimal search of the path, after which the movement of the
character would not look artificial. For this reason, additional smoothing
algorithms, as well as hierarchical search, are often used.

145

5.3.6. Heuristics

Human beings use heuristics all the time. A heuristic is an approximate
solution that might work in many situations, but is unlikely to work in all. We
don’t try to work out all the consequences o f our actions. Instead, we rely on
general principles that we’ve found to work in the past or what we believe will
work.

There are whole ranges of heuristics that can be applied to general AI

problems. In the Pacman example, the ghosts chase the player by taking the
route at a junction that leads toward player’s current position. The simple rule
might not be useful if the player continues to move. But the rule of thumb
(move in the current direction of the player) works and provides sufficient
competence for the player to understand that the ghosts aren’t purely random in
their motion.

5.3.7. Neural networks

Modem AI games can analyze the state o f the game and adapt it to the
player’s skills based on neural networks. They condition the learning process by
gaining experience, thus regulating and consequently automatically adjjusting
the degree o f their difficulty. In this case there is a correlation between the
player and the game - the growth o f the player's experience and skills results in
the development o f the virtual world. The algorithms that govern the difficulty
levels are:

• gaining experience and analyzing them

• selection o f parameters resulting from achieved effects

• planning strategies for further development using self-adaptive systems.

So far games with neural networks are most often used in sports games,
mainly racing type “Colin McRae R a l l y 2. 0” (2000). Based on inpuit data

such as road shape, terrain type, and vehicle parameters, the network must

generate commands for computer-controlled vehicles so that they can
unobstruct the entire track and compete with the player

14(>

In some games called “shootings” using computer-controlled characters
(so-called “bots”), AI with learned behaviors that simulate action of real players
based on the patterns introduced by the developer. And while they are
predictable, they are sufficiently capable of replacing live humans during the

game. An example of such a game is Quake 3 Arena (1999), where the bots
are designed to learn from the player (and also from each other) behavior and
strategy. Their AI checks the next tactics, accepts the active and rejects the ones
that do not work. This is one of the first games to use this solution.

A good example of “learning intelligence” is the AI of the game “Black &
White" (2001) and its continuation from 2005. This is a real-time strategy with

elements of the role playing game set in Eden. Black & white is a story in
which a player embarks on an impersonal supernatural being capable of doing
miracles and controlling the world around him. The curious animal as it
progresses in the game grows and also shapes his personality. A well trained
chubby can assist the player in many activities, however we have to constantly
teach him to act as we wish. The development of the personality o f the person is
based on the principle of “strengthening”, which in psychology means
rewarding or punishing for the stimulus; So there is the possibility of
corruption: if we arbitrarily punish and reward, he will never learn correct
behavior, and his actions will be chaotic and unpredictable, which affects the
course o f the gaire.

5.3.8. Fuzzylogic

Improving tie quality of the game's functionality and Increasing its
attractiveness for the player also enables the use of fuzzy logic. In the field of
human behavior simulations it enables:

• giving up the emotional state,

• expanding the emotional and psychological sphere,

• controlling the unrestricted phenomena and behaviors that are equivalent
to those - occurring in the real world.

14 7

The fuzzy logic proposed by Lotfi Zadeh is a conjunction of probability
theory with fuzzy sets theory. Methods o f fuzzy logic, along with evolutionary
algorithms and neural networks, are modem tools for the construction of
intelligent systems capable o f generalizing knowledge. In the context of
artificial intelligence, it allows states other than binary 0 and 1.

In computer games fuzzy logic is used to simulate emotions, so that it is
created much deeper and more similar to the human emotional sphere of
computer characters. Most often in feature games are characters “characters”
that influence how other characters look at the player. Is he good or bad, lawful
or chaotic? Their relationship to the player is expressed in questions like “How
can I trust him” or “How much can I give him?”

5.4. BEHAVIORAL ROBOTIC ARCHITECTURE

Virtual worlds in 3D computer games show a very high resemblance to the
environments in which real robots work and move. Both, and controlled by the
AI o f the individual in the game, must observe the surrounding environment
and on the basis of their knowledge to make decisions consistent with the goals
For this reason, games were started using techniques similar to those used in
real control robots. For example, extended behavioral networks have been
successfully used in Quake II and Unreal games to modîl the behavior of

independent heroes (computer-controlled).

The main idea behind behavioral networks is to dissipate the activation
energy in the network elements (behavioral and target) aid theai select the
behavior that has the most energy. An example o f the use o f the above
technique, as well as subsurface architectures, also used in robotics, is presented
in [Gregory09],

An example of structure is used to help explaining the Alused in a game. It

splits the AI task into three components: movement, decision making, and
strategy. The first two components contain algorithms that work on a character-

by-character basis, and the last component operates on a wiole team or side
Around these three AI elements is a whole set o f additional iifrastructure

148

A i gets given processoi time

AI gets turned into on-screen action

Figure 5.1. The AI model [Millington09]

Not all game applications require all levels o f AI. Board games like c h e s s
require only the strategy level; the characters in the game don’t make their own
decisions and don’t need to worry about how to move.

On the other hand, there is no strategy at all in very many games.
Characters in those games have no coordination that makes sure the enemy
characters do the best job of thwarting the player.

A general structure o f the AI engine might look something like Figure 5.2

[Millingtpn09], Data is created in a tool (the modeling or level design package,
or a dedica^tpl. AI tool), which is then packaged for use in the game. When a
level is toadted, the game AI behaviors ate Created from level 'date and
registered with the AI engine. During game play, the main game code calls the
AI engine which updates the behaviors, getting information from the world
in terface and finalh applying their output to the game data.

The techniques used depend heavily on the genre of the game being
developed. As an AI game is being developed, we’ll need to test a mix and
match approach to get the behaviors you are looking for.

149

Figure 5.2. An proposed schematic fo r A I game system [Millington09]

5.5. SELECTED EXAMPLES OF SIMPLE GAMES

5.5.1. River crossing game

The river crossing is dated back to at least the 9th century JPressman89].
It’s about a farmer, who went to a market and purchased a fox, a goose, and a
bag o f beans [WikiRiver]. On his way home, the farmer had to cross a river by
boat, which could carry only the fanner and one of his 3 purchases. I f left
together without the farmer, the fox would eat the goose, or the goose would eat
the beans. The challenge was to cross the river with all purchases intact.

An example of the solution is the 7 steps as follow:

1. Take the Goose over

2. Return

3. Take the beans over

4. Return with the goose

5. Take the fox over

6. Return

7. Take goose over

In this section, we will present the automatic search for solutions realized
in PROLOG. This example is based on the lecture notes at [WebGao]. In the
algorithm, a “state” is a set of 6 parameters:

1. Side of river fox is on

2. Side of river goose is on

3. Side of river bag of beans is on

4. Side of river farmer is on

5. Opposite of side of river farmer is currently on

6. Previous purchase carried across river

The program is as follow:
* Move across river procedures
move(state(Fox,Goose,Beans,X, Y, _),
over(man,Y), * man crosses over by himself
state(Fox,Goose, Beans, Y,X,nothing)) .
move(state(X, Goose,Beans,X,Y,_) ,
over(fox,Y), % fox changes sides
state(Y,Goose, Beans, Y, X, fox)) .
move (state(Fox,X,Beans,X,Y,_),
over(goose, Y) , % goose changes sides

state(Fox, Y, Beans,Y,X,goose)) .
move(State(Fox, Goose,X,X,Y,),
ovfettgrain, Y) , % grain changes sides

state(Fox,Goose, Y, Y, X, grain)).

* nonredundant moves are when current move
% is different from previous move

n o n r e d u n c a n t (s t a t e P r e v _ m o v e),
state(_, Move)) Move\==Prev_move.

% Procedire losesome: checks for invalid combinations.
% Fox eats goose, Man is on other side.
losesome(state(Sidel, Sidel,Beans,Man,_,_))

Silel\==Man.

151

* Goose eats grain, Man is on other side.
losesome(state(Fox,Sidel,Sidel,Man,_,_)):-

Sidel\==Man.

% Procedure cross the river

cross(state(right,right,right,right,left,_)).

% final state
cross (Statel) :-

move(Statel,Move,State2),
nonredundant(Statel,State2),
\+(losesome(State2)),
cross(State2) .

* Invoke with this clause:
start: -

cross(state(left,left,left,left,right,nothing)).

5.5.2. Tic-tac-toe game

T i c - t a c - t o e (also known as X s a n d Os) is a two p l i e r s game on a
3x3 grid [WikiTic], The players in turn write down X or 0 marks on the grid.
The player, who succeeds in placing three of their marks in a horizontal,
vertical, or diagonal row wins the game. The following example game is won
by the first player (X) after his 4-th move.

O O O O X o X o
X X X X X X O x X O x X O x X o

O O X

Figure 5.3. An example o f a Game o f Tic-tac-toe, won b y X

Because of the simplicity of the game, it is often used as an example AI
algorithm that deals with the searching of game states. It is straightforward to
write a computer program to play tic-tac-toe, which knows all the possible
different moves or even all the possible combinations o f games.

152

In 1952, a British computer scientist Alexander S. Douglas implemented
for the EDSAC computer at the University of Cambridge a version of Tic-Tac-
Toe, becoming one of the first known video games [Wolfl2], The computer
player could play perfect games of tic-tac-toe against a human opponent.

In this section, we present an example of Tic-Tac-Toe program in Prolog
based on the lecture notes of [WebTanimoto03]:

% To play a game with the computer, type playo■
i To let the computer play with itself, type selfgame■

% Predicates that define the winning conditions:
win(Board, Player) rowwin(Board, Player).
win(Board, Player) colwin(Board, Player).
win(Board, Player) diagwin(Board, Player),
rowwin(Board, Player)

Board=[Player,Player,Player,
rowwin(Board, Player)

B o a r d = P l a y e r , P l a y e r , P l a y e r ,
rowwin(Board, Player)

B o a r d = { _ , P l a y e r ; Player, Player] .
colwin(Board, Player)

Board=[Player,_,_,Player,_,_,Player,_,_].
(Board, Player)
Board=[_,Player,_,_,Player,_,_,Player,_].

ccJltdfi^Board, Player)
B o a r d = P l a y e r , P l a y e r , P l a y e r] .

diagwin(Eoard, Player)
B o a r d = [P l a y e r , P l a y e r , P l a y e r] .

diagwin(Eoard, Player)
Board=[_,_,Player, Player,_,Player,_,_] .

% Predicate for alternating play in a "self" game:
o t h e r (x ,c) .
other(o,x) .

153

game(Board, Player)
win(Board, Player), !,
write([player, Player, wins]).

game(Board, Player)
other(Player,Otherplayer),
m o v e (Board,Player,Newboard),
i• I
display(Newboard),
game(Newboard,Otherplayer).

move([b,B,C,D,E,F,G,H,I], Player,
[Player,B,C,D,E,F,G,H,I]).

move([A,b,C,D,E,F,G,H,I], Player,
[A,Player,C,D,E,F,G,H,I]).

move([A,B,b,D,E,F,G,H,I], Player,
[A,B,Player,D,E,F,G,H,I]).

move([A,B,C,b,E,F,G,H,I], Player,
[A,B,C,Player,E,F,G,H,I])i

move([A,B,C,D,b,F,G,H,I], Player,
[A,B,C,D,Player,F,G,H,I]).

move([A,B,C,D,E,b,G,H,I], Player,
[A, B, C, D, E,Player,G,H,I]) .

move([A, B,C,D,E,F,b,H,I], Player,
[A,B,C,D,E,F,Player,H,I]).

move ([A, B, C, D, E, F, G, b. I] , Player,
[A,B,C,D,E,F,G,Player,I]).

move([A,B,C,D,E,F,G,H,b], Player,
[A,B,C,D,E,F,G,H,Player]).

display([A,B,C,D,E,F,G,H,I])
write([A,B,C]),nl,write([D,E,F]),nl,
write([G,H,I]),nl,n l .

selfgame game([b,b,b,b,b,b,b,b,b],x)

t Predicates for playing a game with the user:
x_can_win_in_one(Board)

move(Board, x, Newboard),
win(Newboard, x).

% The predicate o respond generates the computer's
% (playing o) reponse from the current Board.
orespond(Board,Newboard)

move(Board, o, Newboard),
win(Newboard, o),
!

orespond(Board,Newboard)
move(Board, o, Newboard),
not(x_can_win_in_one(Newboard)).

orespond(Board, Newboard)
move(Board, o, Newboard).

orespond(Board,Newboard)
not(member(b,Board)),
! i
write ('Cats game!''), ni,'
Newboard = Board.

% tnnslations from an integer description

* o t i 's move to a board transformation.
xmoVe Ï|ê,b,c,'d ,È,F,G,h,I],1, f x,È,C,D,È,F,G,H,I)) .
xmove ([A,b,C,D,E,F,G,H,I],2, [A,x,C,D,E,F,G,H,I]) .
xmove ([A,B,b, D, E, F, G,H,I],3, [A,B,x,D,E,F,G,H,I]) .
x move([A,B,C,b, E, F, G, H, I] ,4, [A,B,C,x,E,F,G,H,I]) .
xmove ([A,B,C,D,b, F,G,H, I],5, [A,B,C,D,x,F,G,H,I]) .
x move([A,B,C, D, E,b, G, H, I] ,6, [A,B,C,D,E,x,G,H,I]) .
xmove([A,B,C,D,E,F,b,H,I],7,[A,B,C,D,E,F,x,H,I]).
xmove ([A,B,C,D,E,F,G,b,I],8, [A,B,C,D,E,F,G,x,I]) .
xmove([A,B,C,D,E,F,G,H,b] ,9, [A,B,C,D,E,F,G,H,x]) .
xmove(Bocrd, N, Board) write(’Illegal move.Xn1)

155

% The O-place predicate plays o
% starts a game with the user.

playo explain, playfrom([b,b ,b ,b ,b,b,b ,b ,b]) .
explain

write)'You play X by entering integer positions
followed by a period.'),

nl, display([l,2,3,4,5,6,7,8,9]).

playfrom(Board)
win(Board, x), write('You win!'),

playfrom(Board)
win(Board, o), write('I win!'),

playfrom(Board) read(N),
xmove(Board, N, Newboard),
display(Newboard),
orespond(Newboard, Newnewboard),
display(Newnewboard),
playfrom(Newnewboard).

5.6. CONCLUSIONS

Artificial intelligence in games is defined by algorithms that perform
certain actions, and sometimes also learn some o f the player's behavior. It's not
easy to create and balance snippets o f code. The problem is to create an
artificial intelligence working in such a way that it achieves its goals and is not
perceived as an inhuman machine. Unfortunately, it is AI who is most often the
most adventurous element of the game, where opponents run like crazy, unable
to find a way in a beautifully graphically presented world.

Based on the analysis of these algorithms and their use in games and
experiments, it can be seen that, for example, a skirmish with an opponent
should be absorbing and difficult for the player due to its complexity and
ingenuity, and not as often happens due to properly annoying gain of attributes
and skills of the enemy. Frequently AI errors are used and stigmatized by

players, and then they become a joke and complain that the game is not a
challenge in its entirety or in a specific part.

That's why artificial intelligence is often linked to each other, so that the
character's behavior is more natural, visually correct, and also satisfying to the
player. Otherwise, the behavior of the AI while moving from one place to
another is calculated, and decisions are made in combat or conversation. The
game play also changes the behavior of the system - strategic or logical games
do not use methods used in arcade games, and in racing games to conduct
dialogues.

In the case of an experiment, further tests on the use of artificial
intelligence for decision-making are indicated. Classic approach with a random
selection of weights gives positive results. Further research is planned with the
use o f fuzzy logic in decision-making.

It is worth remembering that artificial intelligence in games will remain a
script and only from the creators will depend on how much they will be
expanded. It is important that artificial intelligence does not obscure the idea
and game play present in the games, but only complements it in style.

157

Chapter 6: ARTIFICIAL NEURAL NETWORKS

The Wikipedia states “ The mural network (artificial neural network) is the
generic name o f mathematical structures and their software or hardware
models that perform calculations or processing signals through the rows of
elements performing a certain basic operation on their input, called neurons".
Each of us had a biology at school, so if we wanted to go into details, we could
say that the neural network is a collection o f simple processors (neurons)
connected in some way. Neuron can have many inputs (synapses). It has only
one output etc. The neural network has a learning process, which is an iterative
(repetitive) process to adapt the parameters of the network. In this chapter we
will present an introduction to artificial neural networks with their learning
algorithms to adapt to a data set. Different types o f networks such as MLP,
Hopfield, BAM, Kohonen and their learning algorithms are discussed.

6.1. INTRODUCTION

The begin o f artificial neural networks (ANN) date back to the 40’ o f the
last century when the Perceptron model was developed to mimic the natural
neurons in human and animal brain [McCulloch43] and the mechanism for
memorizing information through the biological network was explained. Further
development of this field of science resulted in the design and construction of
an artificial neural network by Rosenblatt (in 1958). It was an elementary visual
system that could be taught to recognize a limited class of patterns. In these
years, the first applications o f computers, including weather forecasting,
mathematical formulas, or electrocardiogram analysis, were also tried.

After the publication in 1969 of Minsky and Papert's book, in which they
proved that single-layered networks have finite applications, the neural network
was shifted towards expert systems. The interest in ANN has returned in the
mid-1980s due to the works showing that multi-layered, nonlinear neural
networks have almost no limitations. At that time, the development of

neurocomputers began, which was also influenced by advances in VLSI
technology. Various types of multilayered network learning methods, such as
back propagation of blanks, are also important. Another reason for the rise in
popularity is the growing interest from Artificial Intelligence experts, to the
crisis of traditional symbolic techniques developed in the '60, '70 and '80. In
1990s we could observe a growing popularity such as development of the
application sector in medicine, industry, education and other fields.

6.1.1. What is a biological neuron?

The origin model o f the neural network is the human brain which consists
o f billions of nerve cells between which there are even much higher number of
connections. Nerve cells process generate impulses at a frequency of 1 - 100Hz.
A neuron consists o f a cell body, soma, a number o f fibers called dendrites, and
a single long fiber called the axon.

Figure 6.1. The structure o f a biological neuron [WikiNeuron]

The cell membranes play key role in signal transmission; It consists in
propagation cf the voltage difference between the interior and the outside of the
cell. The prir.ciple of the action is when the dendritic stimuli sums up strong

15 9

enough on the cell membrane the neuron generates an output impulse and this
signal is transferred to another neuron through the axon.

6.1.2. Biological Neural Network

Neural network is a very simplified model of the brain. It consists of a large
number o f elements called neurons, which are simple, independent computing
units connecting with each other, working in parallel. The output impulse from
one neuron spreads out to form the input signals for other neurons. They are
connected in a certain predefined way. With a huge number o f neurons and
interconnections between them, the brain can be seen as a highly complex and
parallel information processing system. The information is processed in the
whole network, rather than at specific locations.

6.1.3. Artificial neural networks

Researchers are trying to create artificial neural network (ANN) to
resemble the human brain but they can do that in a minimum degree. The
ANNs are capable o f ‘learning’, that is, they can adapt their parameters to
improve their performance. With a good “training”, ANNs can alaAjvork good
with new samples that they have not yet encountered. For examphÉ researchers
have designed ANNs to recognize hand-written characters, identify human
speech, analyze and classify the bio-signals o f the patients. Not only that, once
setup properly, like other machines, the ANNs can work on cases that human
experts fail to deal with.

An artificial neural network consists of a number neurons, which are
similar to the biological neurons in the brain. The neurons are connected and
the connections have their own weights. Each neuron receives a number of
input signals and produces an output signal. The output signal is transmitted to
a number of other neurons in the network.

160

6.2 . THE ARTIFICIAL NEURON MODEL

A neuron receives several signals from its inputs, computes a new
activation level and sends it as an output signal. The input signal can be raw
signal from sensory neurons or outputs of other neurons. The output signal can
be an input to other neurons. Figure 6.3 shows a typical neuron.

In 1943, Warren McCufloch and Walter Pitts proposed a very simple m odd
o f the neuron, in which it computes the weighted sum o f the input signals and
compares wiih a threshold value, 9. If the weighted sum of inputs is greater
than the threshold, the neuron becomes activated and its output is +1
[McCulloch43], otherwise its output is 0. This neuron model is also called the
perceptron.

Mathematically, the weighted sum of inputs u and the output y o f a neuron
is defined as:

161

where u is the weighted sum o f inputs to the neuron, x, is the /'-th input signal,

Wj is the weight of i-th input, N is the number of neuron inputs, and y is the

output of the neuron.

2

15
1

05

0
*0.5

-1

•1.5

»

-3 -2 - 1 0 1 2 5
Weighted sum of inputs

Figure 6.4. Thresholded step activation Junction of the McCulloch - Pitts
neuron (8=0.5)

Other possible activation functions are, for example: the sign, sigmoid,
tangential sigmoid and linear functions. Some of them are illustrated in Figure
6.5, where:

i+1 i f « > 0

0 i f w = 0 ,

-1 i f 7/ < 0

Sign function: y sign (w) =

Sigmoid function: y s,gmo,d (u) =
1

\ + e~u

Tangent hyperbolic (also known as tansig function):

v)

-1 5

2 ■
Weighted sum of inputs

Figure 6.5. Ezamples o f activation functions o f a neuron: a) sign function, b)

sigmoid function, c) tansig function

W ith the stricture and principle of operation as described above, neurons
are practically a nonlinear unit. What makes neurons different from other

163

nonlinear mathematical models is that it comes with learning algorithms and
the process of assessing the quality o f neurons through the use of new data
samples. It can be said that each intelligence model in general and the neural
model in particular have two specific processes, the learning process and the
testing process. Here we will explore the learning process for the McCulloch-
Pitts neural model.

6.3. TRAINING THE PERCEPTRON

Single neuron with step activation function is able to solve linearly

separable problems, i.e. those whose results can be separated in a straight-line
graph. Learning process is considered to be the most fascinating phenomenon
associated with neural networks. It is worth to mention the foundations of
machine learning. During the learning process, the weights and the threshold of
a neuron can be adapted to adjust the output o f the neurons. In case o f a
‘supervised learning’, it consists in calculating error at the neuron’s output and
using that error for weights and threshold corrections.

In order to carry out the learning process we need a set o f sample data. That
is, pairs o f input data and desired (destination) output from the neuron. With a

set ofp samples , i = 1 , . . . , p , where x, e S 'v is the input vector, ¿ ¡ e l

is the desired (destination) value, we need to find the weights and the threshold

of the neuron with the transfer function / Q such:

Since neural models are usually models with nonlinear transmission
functions, this is in fact a nonlinear optimization problem in multidimensional
space. These problems are difficult to solve directly with a global solution, so
usually we have iterative algorithms for local minima approach. When the

Ki4

(6.2)

(6.3)
z i=i

iteration is finished, it is said that the learning model has acquired the
information of the sample, which in part has learned about the problem from the
surrounding environment. If the target function value is acceptable, we will stop
the training process and move to the testing phase. However, due to the fact that
the training sample set is usually limited in size, it is not possible to cover all
possible cases, which means that the learning process cannot be complete.
Therefore, it is necessary to assess the performance of the model by using new
cases. This is similar to the idea of examination after training course.

For demonstration, we will consider the learning o f a neuron to act
according to the binary OR operation. In this case we have the following set of
patterns:

Sample nr Xi x2 d

1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 1

The neuron to which we could attach such a collection should have 2
synaptic input connections and 1 output. Each o f these samples (1, 2, 3 or 4) is
put on th&geuron

The process of learning need to adapt for several times (also called epochs).
W ith each iteration the error will be less and less. For each sample we calculate
the error as follows:

\ / i=\ ,2 , . . . ,p:e t = y i - d i = f (x ilWl +xi2W2 +W0) - d i (6.4)

where d t is the expected response, y, - the value that appeared on the output

o f the network. The i index indicates the sample number from our set. The error
will be differen: for each of samples. The total target cost function will be

E = ̂ i ef (65)
1 / = 1

165

Once we have all the errors, the parameters of the neuron are adapted using
these values fLinh 14]:

< +l)=W<t,) -T 1- ^ - fo r a = 0,1, . . . ,N
dWr

(6 .6)

where r j - the learning rate. We can speed up or slow down the changes by

setting the value of r). It should accept values between 0 and 1. With bigger

value the learning will be faster, more aggressive, but less precise. And lower
values will make learning slower, laborious, but accurate and precise.

The size of the changes on synapses is proportional also to the value of
input information. With the target function defined in Eq. (6.3) and (6.5), the
gradient is equal:

dE
dWr = f0 '.-4)J ha /=1 o n a

' N

¡=i U=o
P (N \

= Z (y . ~ d :) f ' Z WJ XV Xict
M \7~0

Let take one example for the OR function, the sample number 2 with

x ,= 0 ; x2 = l; d = 1; the initial weights [W](0)=^fT0(0) W f J are

[-0.3 0.6 0.2]; the neuron uses transfer function logsig(). The steps are

following. First, the output signal is calculated:

y ,((>) = f (f f o(0)̂ o + + Wl0)x2) = / (0.8) = 0,69.

The error £ (0) = I (v(0)- i /) 2 = | (0 , 6 9 - l) 2 =0,

The gradients:

0 4 8 1

106

BE

BWn [w]=[vv],1(0)

BE

BWX

BE

[w]=[wf

= (y W - d) f ' (w ^ + + W ^ x 2) x0

= (/ 0)- d) / 0)(l - / 0)) x 0

= (0 ,69 -1) 0,69 (1 -0 ,6 9) 0 = 0

= (ym - d) f { w i m +wlm\ + w } mx2)xl

= (0 ,6 9 -1) 0,69 (1 -0 ,6 9) 1 = -0,0663

= (ym ~ d) / ' (< 0)+ W ^ x x+ W2(0)x2) x2
[w]=[wf}

= (y °) - ^) y o)(1- y o)) ^

= (0 ,6 9 -1) 0,69 (1 -0 ,6 9) 1 = -0 ,0663

Let’s use the learning coefficient 7 = 1 we get the new weights:

BE

BW,

0o(1) - W ^ - t j
BWn

= -0 .3 + 1 0 - - 0 .3
[w]=[w]<0)

w W = w (0)_rj

W ?) = W ?) -T)

BE

BW,

BE

[w]=[wf

BW,

: 0,6 + 1-0,0663 = 0,666

= 0,2 + 1-0,0663 = 0,266
[w]=[wf>

With this updated weights, the new output value is equal:

/ > = f (w ^)x0 + W ^)xx+ W ^)x2) = f (0.932) = 0,718.

The error after the update:

Ew = ! (/ > - d f = 1 (0 ,718 - 1)2 = 0,0398 < 0,0481 = E (n)

167

So we can see that the error was reduced after 1 step of learning the neuron.
Repeat the algorithm for more iterations (also called epochs), we will reach a
local minimum o f the cost function.

6.4. MULTILAYER PERCEPTRONS (MLP)

A single neuron has the ability to adapt to a nonlinear function, but with
that simple structure a single neuron can do not much. It’s similar to our brain.
In order to function normally we need a huge number of neurons connected
with each other to increase to ability to process the collected information. Those
neurons will form a neural network.

A multilayer perceptron is a feedforward neural network with one or more
hidden layers. Typically, the network consists o f an input layer, at least one
hidden layer and an output layer, where the neurons are in the hidden and
output layers only. The multilayer perceptions with one and two hidden layers
are shown in Fig. 6.6.

(b)
Figure 6.6. Multilayer perceptron with one (a) and two hidden layers (b)

Classical MLPs don’t have limitation on the number of hidden layers, but
most of the researchers based on the Komogorov theorem use 1 or 2 hidden
layers only, among which the one hidden layer configuration is much more
popular.

. With one hidden layer, the MLP can be characterized by triple (N , M , K)

where N - the number of inputs, M - the number of neurons in hidden layer,
K - the number of outputs.

Denote the weights connecting the input to the hidden neurons by Wy

where /' r- the index o f target neuron, i = 1, j - the index o f the source

neuron j = 0,1,2,...N .

Denote the weights connecting the hidden neurons to the output by Vy

where / - the index of output neuron, i = \,2 ,...,K ; j - the index of the hidden

neuron j = 0,1,...M .

Let the transfer function of the hidden neurons is / [0 , the transfer function

o f the output neurons is / 2(). When there is an input vector

x = [x|,.v2,...,-vv] e (the bias input for all neurons is x0 = 1) the outputs are

calculated in ¿ forwardpropagation manner:

169

• Calculate the sums of weighted inputs o f the 7-th hidden neuron

M
u i = ' L x j W j <6 8)

j=o

for 7 = 1,2 ,...,M .

• The output of the /-th hidden neuron:

v(= f (U i) (6.9)

for / = 1 , (for simplification, we let the output neurons have a

constant bias v0 = 1).

• Calculate the sums of weighted inputs of the Xr-th output neuron:

M

/=0
(6.10)

(6 .11)
v

for k = \,2 ,...,K .

• And finally, the output of the ¿-th neuron is:

yk̂ fiiSk)
for k = \ ,2 ,...,K .

Combining all the above steps, the MLP is a strongly nonlinear system with
the transfer function equal:

f M \ (M

yk=fi(gk) = f2 =/2 £/>(«,K
\ i ~ 0 / v/=o

- / 2

M
I
/=0

/1

\i= 0

(N '
I

\J~ 0

(6 .12)

Learning in a multilayer network proceeds the same way as for a
perceptron. A training set of input patterns is presented to the network. The
network computes its output patterns using above formulas, and the difference
between actual and desired output patterns are used to adjust the weights. In a

170

perceptron, there is only one output, but in a MLP, there can be more than one
outputs. The weights are modified as the error is propagated. Similar to the
neurons, the weights of MLP can be updated using the gradient formulas:

K p +l) = K ' J - n
cE

ap 8Wr

K 'p+1) = v $ - v
8E

(6.13)

dKap

The detailed explorations of these formulas can be found in [Haykin92].

6 .5 . RECURRENT NEURAL NETWORKS

The MLP trained with the back-propagation algorithm are used for various
applications with good performance. But the MLP has a drawback. It doesn’t
have memory, i.e. when a new input vector is presented into the network, the
output calculation is not affected by previous values of inputs and outputs. To
have a network with memory, we need a different type of network, a recurrent
neural network.

6.5.1 , Hopfield network

A recurrent neural network has feedback loops from its outputs to its
inputs. Ihe presence of such loops has a great impact on the way the output is
calcutldgls on the stability of the network and on the algorithm of network
training.

The Hopfield network has the structure as shown on Fig. 6.7. The output of
each neuron is fed back to the inputs o f all other neurons (there is no self­
feedback). After applying a new input vector, the network output is calculated
and fed back to adjust the input. Then the output is re-calculated again, and the
process is repeated until the output becomes constant. Successive iterations do
not always converge, but on the contrary may lead to chaotic behavior. In such
a case, the network output would not become a constant, and the network is said
to be unstable

171

Figure 6.7. Single-layerN-neuronHopfieldnetwork

The Hopfield network usually uses McCulloch and Pitts neurons with the
sign activation Junction as its computing element. If the neuron’s weighted sum
of inputs is less than zero, the output is -1; if the weighted sum of input^js
greater than zero, the output is 1. A difference introduced here is if the neuron’s
weighted input is exactly zero, its output remains unchanged.

+1 if u > 0
-1 if m < 0 (6.14)
0 if u = 0

The sign activation function may be replaced with a saturated linear
function, which acts as a pure linear function within the region [-1; 1] and as a
sign function outside this region. The saturated linear function is shown in

Figure 6.8.

The current state o f the network is determined by the current outputs o f all
neurons and the state can be defined by the state vector as:

172

Jt
^2

\Jn .

Saturated linear function

: b i ^2 ••• > v f (6.15)

+1 if u> 1
= if u < - 1

M // - 1 < U < 1
Figure 6.8. The saturated linear activation function

In the Hopfield network, synaptic weights between neurons can be
represented in matrix form as follows:

i=l
(6.16)

where p is the number of states to be memorized by the network, Y, is the TV-

dimensional binary vector.

Suppose, for instance, that our network is required to memorize four
samples {-!, -1, 1, 1, 1]; [1, 1, -1, -1, 1]; [

'-1

the four 5-bit vectors: Y, =
-1

1
1
1

y 2 =

,-1 ,-1 , 1 ,-

; y3 =

] and [-1, 1,-1, 1,-1] or

and Y4 =

Thus, we can now determine the weight matrix as follows:

173

W = Y \Y [+ Y2Y2r + Y3 Y3r + Y4Y4r =

4
0

-2
-2

0

0 - 2 - 2 0

4 - 2 - 2 0
-2 4 0 2
-2 0 4 - 2
0 2 - 2 4

With the weight matrix W is calculated, the network can be tested with the
same 4 input vectors to check if it is stable for all these samples (the output is
equal exactly the input). The outputs are calculated using the formula:

Y(= sign(W • X; - 0) = sign?W • X ,) , / = 1,2,..., p (6.17)

where 0 is the threshold (0 for this example). For the 4 cases we have:

-8
-8

= sign\ 10 i-= 1 =Y,
6
4

sign (W ■Xl) = sign

sign (W X2) = sign

sign (W X 3) = sign

sign(XV X 4) = sign

4 0 -2 -2 0

0 4 -2 -2 0
-2 -2 4 0 2
-2 -2 0 4 -2

0 0 2 -2 4

' 4 0 -2 -2 0"
0 4 -2 -2 0

-2 -2 4 0 2
-2 -2 0 4 -2

0 0 2 -2 4_

' 4 0 -2 -2 0'
0 4 -2 -2 0

-2 -2 4 0 2
-2 -2 0 4 -2

0 0 2 -2 4

4 0 -2 -2 0 '
0 4 -2 -2 0

-2 -2 4 0 2
-2 -2 0 4 -2

0 0 2 -2 4

-s ig r

= sigr

= sigr

8

8
-6

-10
4

' 4'
-4
-6

6
-8

-4
4

-6
6

-8

= Y,

= y 3

= Y,

174

As we see, Yy = X; for all the 4 cases, which means these cases are stable.

6.5.2. Bidirectional Associative Memory Network

Bidirectional Associative Memory (BAM) proposed in [Kosko87] is a
heteroassociative network. It associates patterns from one set (set A) to patterns
from the second set (set B). The BAM architecture is shown in Figure 6.9. It
consists of two layers: an input and an output layer.

The input vector Xj0’ is applied to the transpose of weight matrix W r to

produce an output vector Y,(0), as illustrated in Fig. 6.9. Then, the output vector

Y/° ’ is applied to he weight matrix W to produce a new input vector X-’\

This process is repeited until input and output vectors become unchanged, or in
other words, the BAM network reaches a stable state:

^ y ('! = W r - i (-0

(6 .18)

175

The BAM network can generalize (and correct) the outputs when the inputs
are incomplete or noised.

To develop the BAM, we need to create a correlation matrix for each

pattern pair we want to store. The correlation matrix is the matrix product o f the

input vector X, and the transpose of the output vector Y7 . The BAM weight
matrix is the sum of all correlation matrices, that is,

W = £ x iYjr (6.19)
¡=1

where p is the number of pattern pairs to be stored in the BAM.

Like a Hopfield network, the BAM usually uses McCulloch and Pitts
neurons with the sign activation function. The BAM training algorithm can be
presented as follows.

Step 1: Storage

The BAM is required to store p pairs of patterns. For example, we may
wish to store four vectors

T '-1 ' f '- 1 '
l & n l . v 3 = - l and Y4 = -1
l - l - l 1

corresponding to the 4 vectors we have in the example fir Hopfield network
above:

“ I f

1
f

1
1
1

II -1 ; x 3 =
i

and X4 =

1
1 1 - l -1

In this case, the BAM input layer will have 2 neuronsand the output layer
has 3 neurons. The weight matrix is determined as [KoskoS]

W = X X i -Yjr
/=1

0 0 -4
-4 0 0

2 2 2
2 -2 2
0 4 0

Step 2: Testing

The BAM should be able to receive any vector from set A and retrieve the
associated vector from set B, and receive any vector from set B and retrieve the
associated vector from set A. Thus, first we need to confirm that the BAM is

able to recall Y(when presented with X , . That is,

Y, = sign(W X'), i = l,

X ^ s i g n i W Y,), / = 1,

For the 1st p a r of samples.

(6.20)

(6 .21)

sign(W X! = sign
0 - 4 2
0 0 2

-4 0 2

2 0
-2 4
2 0

= sign = Y,

0 0 - 4 ' ~-4 ’- f
-4 0 0 T -4 -1

signCW ■ Yj) = sign ■ 2 2 2 l • = sign < 6 .= 1
2 -2 2 l 2 1
0 4 0 4 1

177

For the 2nd pair of samples:

' 0 -4 2 2 0"
l l
1

X 2) = sign< 0 0 2 -2 4
-4 0 2 2 0 _]

l j

"-8" - 1 '
= sign' 4 1 = Y2

-8 -1

r 0 0 -4 ' 4 f
-4 0 0 '- 1 ' 4 1

sign(W -Y2) = sign- 2 2 2 1 ■ = sign- -2 .= -1
2 --2 2 -1 -6 -1
0 4 0 4 1

For the 3rd pair of samples:

sign(W r ■ X3) = sign-
0 - 4 2 2 0

0 0 2 -2 4
-4 0 2 2 0

sign(W ■ Y3) = sign

' 4 ' f
= sign- -8 .= -1 = y 3

-4 -1

r 0 0 - 4 ' 4 f

-4 0 0 f -4 -1
sign• 2 2 2 -1 • = sign- -2 .= -1

2 --2 2 -1 2 1

0 4 0 -4 -1

178

For the 4th pair o f samples:

signÇW7 ■ X4) = sign
0 - 4 2
0 0 2

-4 0 2

= sign

2 0
-2 4
2 0

= Yd

signÇW \ 4) = sign

T 0 0 -A ' - 4 ' -1 ’
-4 0 0 '- 1 ' 4 1

2 2 2 -1 = sign- -2 • = -1
2 -2 2 1 2 1

)_ 0 4 0 -4 -1

= Xs

In our example, all four pairs are recalled perfectly, and we can proceed to
the next step.

Step 3: Retrieval

Present an unknown vector (new) X to the BAM and retrieve a stored

association. That is X ^ ^ X , , V/' = 1,2 , . . . , p . The new input may present a

corrupted or incomplete version of a pattern from set X (or from set Y) stored in
the BAM.

.(a) Initialize the BAM retrieval algorithm by setting

X(0) = Xnew, p = 0

and calculate the BAM output at iteration p

\ (p) = s ig n [w T -X(/>)]

(b) Update the input vector X(p):

X (/7+ l)= J / g 7 i [W - Y (/7)]

179

and repeat the iteration until equilibrium, when input and output vectors remain
unchanged with further iterations. The input and output patterns will then
represent an associated pair.

The BAM is unconditionally stable [Kosko88], This means that any set of
associations can be learned without risk of instability.

Let us now return to our example. Let test with Xnew equals:

1 X(0)

Y(0) = • X(0)] = sign

0
1

-1

X(l) — W • Y(l)] = sign

4
0
0

-4
4

1
0
0

-1
1

Y(l) = s/£??[wr • X (l)] = sign-
-2
6

-6

-1
1

-1
(=y2)

X(2) = s/g?;[W Y (2)] = s/g?i (=X2)

180

After 3 steps, the BAM network converges to the 2nd pair of original

samples. Let test now with \ new equals:

Y =new = Y(0)

X (0) = sign[W Y(0)] = sign

-4
4

2
-2

4

' - 4 ' - f
sign■ 8 .= 1

4 1
f= Y)V new J

X (l) = sign [W ■ Y(l)] = X(0)

After 2 steps, the BAM network converges to new pair, different than all of

the 4 original samples, X5 ;y 5 =

- l
l
l

There is also a close relationship between the BAM and the Hopfield
network. If the BAM weight matrix is square and symmetrical, then and the
BAM can be reduced to the auto-associative Hopfield network Thus, the
Hopfield network can be considered as a BAM special case.

In general, the maximum number of associations to be stored in the BAM
should not exceed the number of neurons in the smaller layer. But during the

iterations, the BAM may not always produce the exact output vector, but only

181

the closest association. In fact, a stable association may be only slighty related
to the initial input vector.

The BAM still remains the subject of intensive research. However, despite
all its current problems and limitations, the BAM promises to become one of
the most useful artificial neural networks.

6.6. UNSUPERVISED LEARNING AND SELF-ORGANISING NEURAL
NETWORKS

The distinct property of a neural network is the ability to learn from its
environment, and to improve its performance through learning. So far we have
considered supervised learning - learning with an external ‘teacher’ or a

supervisor who presents a training set to the network. But another type of
learning also exists: unsupervised learning.

In contrast to supervised learning, unsupervised or self-organised learning
does not require the destination values in the data samples but only the input
values. During the training process, the neural network uses a number of
different input patterns, discovers significant features in these pittems and
learns how to classify input data into appropriate categories. Unsupervised
learning tends to follow the neuro-biological organization of the brain.
Unsupervised learning algorithms is usually faster than supervised leiming, and
thus can be performed in real time systems.

Self-organizing neural networks are effective in dealing with unexpected
and changing conditions. In this section, we present Hebbian and competitive
learning, which are based on self-organising networks.

6.6.1. Hebbian learning

In 1949, Donald Hebb proposed the idea commonly known as Hebb’s Law
[Hebb49], Hebb’s law states that if neuron / is near enough to exciie neuron j
and repeatedly participates in its activation, the synaptic connection between
these two neurons is strengthened and neuron j becomes more sensitive to
stimuli from neuron i.

The Hebb’s law can be translated into the form of two rules as follows
[Stent73]:

• If two connected neurons are activated synchronously, then the weight
of the connection between the neurons is increased.

• If two connected neurons are activated asynchronously, then the weight
of the connection between the neurons is decreased.

Hebb’s law provides a kind of unsupervised learning, where the learning
process is performed without the feedback from the environment.

Using Hebb’s law the weight wtJ between neuron i with the presynaptic

level x, (incoming signal) and neuron j with postsynaptic level y} (outgoing

signal) at iteration t is updated basing the following form:

Am> f = F [y f , x ^) (6.22)

As a special case, we can represent Hebb’s Law as follows [Haykin99]:

Am;,'1 a - y (p - x (p (6.23)

where a is the learning rate parameter.

These equations (6.22) and (6.23) are referred to as the activity product
rule. Hebbian learning implies that weights can only increase, i.e. the strength
o f a connection can only increase This fact leads to the risk that when being

repeatedly stimulated the weight wif can easily be saturated. To avoid this

problem, we can introduce a non-linear forgetting factor into Hebb’s law in Eq.
(6 .23) as follows [K. ohonen89]:

Aw f ~ a - y (p • xj° - <f> ■ y f ■ w f (6.24)

where 0 - is the forgetting factor.

6.6.2. Competitive learning

A nother pooular type o f unsupervised learning is com petitive learning. The

K ohonen network is a model proposed by Teuvo Kohonen in 1989

183

[Kohonen89], The network is also known as a self-organizing map (SOM) and
is a model that characterizes a group of models operating on the principle of
grouping by similarity between the samples. Group input signals based on
compatibility for compatibility.

The idea of clustering and self-organization baes on the facts that our brain
is a very complex system. The structure of the brain is inconsistent, covering
many different regions. Recent biomedical studies have shown that each region
of the brain has a different structure, number of neurons and the way they are
connected, and that each region is responsible for different tasks. For example,
there are areas responsible for image processing, motion processing, audio
processing, and so on, and these regions receive signals from different human
“sensors”. We may say that every characteristic human signal will be
transferred into a corresponding region within the brain Therefore, when
constructing the mathematical model o f the Kohonen netvork, we have the
input signal belonging to a given space. Unlike the MLP netvork, the Kohonen
network operates on a “self-organizing” basis, meaning tha: the network only

works with input vectors x, without corresponding output)attenV§ d , . In the

self-organizing problem, given a set of data sets and a nquired number of
centers M, we need to find the location of those M centers wiich best represent
the whole input samples. Samples and centers are represents in the form of a
vector with the same dimension. The input contains a set of/ multidimensional

vectors = [x(1, x(2, e R N;i = 1 -> p. On Fig. 6.10a tiere is an example

of 2D samples denoted as ‘o’ marks and on the Fig. 6 10b isthe way we group
them into 3 groups, each of the group is characterized by its enter (*).

1 8 4

Figure 6.10. Example o f a 2D distribution o f samples (a) and their division
into 3 groups with centers at (*)

When we have data samples expressed in forms of vectors, the degree of
"similarity" between samples is usually determined by the distance between the
vectors. Two vectors with small distance to each other will be considered to be
m ore similar than the case when the distance between them is big. The groups
is mainly determined on the principle that “vectors close to each other will be
prioritized in the same group”. The measure of the distance between the vectors
is mainly based on the Euclidean formula:

When we already have M centers c ,,/ = 1 —>M and there is a new input

vector x then tie competitive action between the centers means a winning
center will be selected. The winning center is the closest one to the new input
vector x

(6.25)

The Kohonen network can be presented as on Fig. 6.10, in which the

components of Cy (/ = 1....... M , j = l , . . . , N) o f M centers c, are stored as the

connecting weights between input Xj and center c , . The network on Fig. 6.11

will have output of the winning neuron equal 1, the other outputs will be 0.

=1 y^Winningfc^x)

=2 y2=Winning(c2, x)

•• yM=Winning(cM.x)

Figure 6.11. Classical structure o f the Kohonen network

In addition to defining the centers, Kohonen proposed also a virtual link
between these centers to form a grid of centers. Accordingly, the network will
have a function that defines the link between the centers. If two centers are
connected then they are called “direct neighbors”, also called first-order

neighbors. If two centers of c/ and c ■ are not directly linked but there exists a

chain of intermediate centers connecting these two centers thea c, and Cj are

called indirect n-th order neighbors (with n - \ being the smallest number 01 '

intermediate centers between them).

To facilitate simulations, two-dimensional grid networks with rectangular,
triangular, hexagonal structures are often used, as in the following Fig. 6.12.

•----- -----♦

(a) ib,

1 8 6

(C)

Figure 6.12. Example o f topology o f the centers' grid in Kohonen: a)

rectangular, b) triangular, c) hexagonal

6.7 . LEARNING ALGORITHM FOR KOHONEN NETWORK

As menstioned above, in the Kohonen network, we have an input data set

containing p vector x, 6 R N, / = 1 ,2 ,...,/?, and a preselected number of centers

M to be found. The training of the Kohonen network is equivalent to finding the

M centers c, e R'v , / = 1,2, . . . ,M , such to represent the whole data samples or

the centers should be located where the data samples concentration is high.
There are various algorithms for training the Kohonen network. In this section,
we will present two of the most popular ones, which are the classical WTA
(Winner Takes All) and the modem FCM (Fuzzy Clustering Method).

6.7.1. The WTA Algorithm

The WTA algorithm can be presented in following steps:

1. Start with the sample numberz = 1.

2 For consercutive steps i = 1 ,2 ,...,p we process with vector x; : find all

the distances from x, to the centers c • to determine the winning

center Nw , which is the closest one to x , .

3. Update the location of the winning center by shifting the center toward

the actual input vector x , .

187

(a) (b)

Figure 6.13. Example o f 4 input vectors Xj, x2, x3, x4 and 2 centers ch c2. With

Xj the center Cj wins and is shifted toward x, when c2 is unchanged

By repeating the steps above for many iterations, the centers will tend to a
stable state. The algorithm is called WTA because at each step, only the
winning center is updated. The formula for the update is as follow:

C£ 1)=C& + * ') [* , - e g ,] (6-27)

where: t - time step, - the winning center at t, rj(t) - update step at t.

The update step //(/) is within the range (0,1) (0 means no shifting at all

= c(̂ , 1 - full shifting cNw toward x , , i.e. = x,). When the centers

are connected in a grid, a shift of a center will cause also the shifts o f its
neighbours (but will smaller steps) as demonstrated on Fig. 6.14.

1 8 S

SOM W tlghl Positions

— -“t "i
*■ — -

r *f t *

S- ̂ T
j Ji "* i._■—

^ r *
0I---,-- j---*---»---‘---*---‘---»---1---

o 0 1 o ? 03 04 o s o e o r oe 09 iW«*gM 1

Figure 15. Example o f a grid o f 8x5 centers in Kohonen network spread
among thi data samples: a) Regular initiation at start, b) after 10 iterations,

c) after 100 iterations, d) after 500 iterations

189

On Fig. 6.15 is an example of a Kohonen network of 40 centers connected

to each other using the rectangle topology 8 x 5 . It can be seen that the network
is deformed to put the centers into places with high concentration of data.

6.7.2. The FCM Algorithm

From the Fig. 6.14 we can also see that the grid connecting the centers can
be unhelpful since it may cause that a center, being hang between 2 other
centers, is located at the point with low data concentration (or even zero data
concentration). To avoid that fact, the FCM algorithm removes the grid
topology completely, which means that all centers can be moved (updated)
independently. In the FCM algorithm (also called the C-mean algorithm), the

centers has also the indices values Uy which indicate the membership function

of vector x ; to center c,. In WTA in particular and in classical Kohonen

network algorithm in general, each input vector Xj will be assigned to the

closest center, which means the membership function is 1, but to other centers
the membership function should be 0:

In FCM, the membership functions are “soften”, which means the

membership can take values from the whole range [0,1] and a vector can

belong to more than one center. But the membership still need to fulfill next
conditions::

1. Total membership of a vector to all centers is 1:

for each data point j = 1 ,2,..., p.

2. The membership is inversely proportional to the distance between the

sample and the center. The closest center will rece:ve the bigger
membership.

(6 .28)

M
(6.29)

The C-mean algorithm has a target function in the learning process
[Dunn73, Bezdek81]:

£ = Z 5 > " l h - xj
<=i j

(6.30)

for w e[l,oo]. To find the minimum of this function with constrains from

(6.30), the Lagrange method is used with the modified function:

A i p 2 p (M ^
(6-31)

¡=1 _/=l J=1 V 1=1 y

w here A are the Lagrangians. The solution for (6.31) is [Dunn73, Bezdek81]:

c, =
z ; = i <

(6.32)

and

Uv=-
Z M

k=\
J

(6.33)

w here dti = c f - x the distance between c, and the input vector xy . From

these equations, the iterative FCM is defined as follow:

1 Initiate randomly the locations of the M centers (within the range of
the input samples).

2. Calculate the matrix U from (6.33).

3. Find theM centers c, using (6.32).

4 Calculate the target function in (6.31). If the value is less than a
threshold or the change in function’s value is less than a threshold then
stop the learning process, otherwise go back to step 2.

191

(a)

(b)

(c)

(d)

Figure 6.16. The result ofF C M algorithm fo r the data from'he Fig. (6.14: a)
Initial positions, b) after 5 iterations, c) after 10 iterators, d) afte'.r 50

iterations

As it can be seen from the Fig. 6.16, when removing the grid between the
centers, the centers’ locations are much better distributed among the data
samples, no center is outside of data area.

6 .8 . SUMMARY

In this chapter, we introduced the ideas of artificial neural networks and
discussed the main ideas of learning process and learning algorithms. Starting
from the simple perceptron model of McCulloch and Pitts, the supervised
algorithm for the neuron and the network was presented with examples. The
supervised formulas for recurrent networks such as the Hopfield and the BAM
were discussed. After that, the Kohonen network and its unsupervised learning
algorithm were discussed with example.

193

Chapter 7: Evolutionary algorithms

Artificial Intelligence is defined as a computer science field that is capable
of assimilating, analyzing, and exploiting existing facts and knowledge as
information useful for acquiring new facts. Evolutionary algorithms that mimic
the processes of subsequent generations in the natural environment, and the
associated calculations are artificial intelligence [Michalewicz92], The concept
o f evolutionary algorithms includes methodologies inspired by the Darwinian
principle of natural selection used to solve difficult issues This chapter briefly
presents the four basic types of evolutionary algorithms: genetic algorithms,
genetic programming, evolutionary strategies and evolutionary programming,
and detail discusses the main type, which is the genetic algorithms.

7.1. INTRODUCTION TO EVOLUTIONARY ALGORITHMS

What is evolution? Perhaps the best way to describe the wofd§ 8 f Charles
Darwin: “How busy is looking at densely overgrown cocisline covered with
plants o f different species, with singing birds in thickets, m eet-borne insects,
worm-bitten worms, and look at all these strangely constructed form s so
different and in such a complex way dependent on each other’

To think that they were created by laws still acting arouid us. These laws,
in the most common sense, are: growth and reproduction, the inheritance during
the reproduction, the variability under the direct and indrect influence of
external living conditions, and the use and/or non-use of cerain organs for the
existence struggles and the consequences o f the natural selecion, which in turn
leads to divergence of characteristics and the extinction of les improved fonns.
So the fight in nature, with hunger and death directly resuts from the most
advanced phenomenon we can grasp, namely the formation if higher forms of
animals. In the study entitled “The Origin o f Species”, piblished in 1859,
Charles Darwin introduced the theory of evolution by natual selection. This
theory is a source for imitation in solving problems in variousfields o f science

194

It should be emphasized that evolutionary algorithms are based on mechanisms
o f evolution (i .e. selection, crossing, mutation, and reproduction).

Evolutionary algorithms are common name for various techniques
developed over several decades. The most popular of these are: genetic
algorithms introduced by John Holland [Holland75] and popularized by David
Goldberg [Goldberg03], genetic programming developed by John Koza
[Koza92]. The other two techniques are evolutionary programming [Fogel66]
and the evolutionary strategies [Schwefel95],

7.1.1. Genetic algorithms

Genetic algorithms were initiated by J. Holland in 1960. Traditionally,
when searching for an optimal object, various instances of the object type are
generated (forming a population of candidates) and each of them are
characterized by a genetic code called the chromosome. In the simplest case, the
chromosomes in genetic algorithms are fixed length binary strings
(chromosomes can also be encoded by integer or real strings) and the size of the
population is constant. Chromosomes are evaluated in each generation.
Parameters that need to be determined are: population size, probability of
mutation, and condition of termination of algorithm. An adaptation function is
defined in advance to evaluate how fit (adapted) a candidate is to the

environment.

From tihe primary population, new and better populations are created, with
three basic operations: selection, crossing and mutation.

Selection.is the process by which higher adaptive chromosomes are more
likely to introduce descendants to the next generation.

Crossing is an operation performed on randomly selected parental
chromosomes, called parents. For the parents we generates new instances
(children) by randomly taking segments of chromosomes from parents to form
the new chromosomes. The crossing operation is usually performed for a
num ber o f parent pairs.

195

Mutation is an operation performed randomly for each gene separately. It
will modify the chromosome according to a predefined the probability of
mutation to generate new chromosomes.

After selection, crossing and mutation, a new generation is evaluated, i.e. it

is calculated to adapt individual chromosomes from this generation to create a
parental pool for the next generation. The quality of the results obtained by

genetic algorithms depends on the size of the population, the time spent
searching for the solution, the selection of the selection method, the crossing
and mutation operators used, and the probability o f the operations being
performed.

7.1.2. Genetic programming

Genetic programming uses the principles of genetics and Darwinian natural
selection to create computer programs [Koza92, 0cuguwa05], Genetic
programming is largely similar to genetic algorithms. The basic difference
between genetic programming and genetic algorithms lies n the representation
of the solution. While the genetic algorithm creates a sequence o f numbers that
represents the solution o f the problem, in genetic programming individuals are
tree-like programs (such as programs written in LISP), aid genetic operators
are applied to the branches and nodes in those trees [Kinne;r94, 0duguwa05],

7.1.3. Evolutionary programming

Evolutionary programming focuses mainly on optimisation problems with
continuous parameters. In evolutionary programming, :ach parent in the

population generates a descendant by mutation. The probability o f a mutation is
generally evenly distributed. After evaluating the desceidants, a variant of
stochastic tournament selection chooses some of the best ndividuals from the

parent and descendant team. The best individual is always;tored to ensure that

if the optimum is achieved, it can not be lost. Evolutionär programming is an
algorithm that uses only selection and mutation mecb.atii >rs without crossing)
[0duguwa05],

7.1.4. Evolutionary strategies

There are two main evolutionary strategies (p, P) ES and (p + P) ES, where

[i parents produce P descendants using the crossing and mutation operator.

In strategy (n, P) ES the best P descendants are survived and replaced the
parents. As a result, parents are not present in the next population. On the
contrary, the strategy (|i + P) ES allows the survival of both descendants and
parents. The (|i + P) ES uses an elite strategy (the best individual is always
copied to the next population). In both strategies, both crossing and mutation
are performed [0duguwa05],

In the following parts we will concentrate more on the genetic algorithms,
since all the main ideas and techniques are included in the design of them.

7 .2 . THE DETAILED STRUCTURE OF EVOLUTIONARY ALGORITHMS

As mentioned above, the evolutionary algorithm is a term that
approximates an optimization algorithm that uses selection, reproduction and
mutation mechanisms inspired by the biological process of evolution.

According to [Michalewicz92] we have “The idea behind genetic
algorithms is to do the same thing that nature does. Let's take the example of
rabbits. At any time we have a rabbit population. Some are faster and smarter
than others^ Faster and smarter rabbits have a better chance of fleeing from the
fox. As a result they are more experienced to do what rabbits do best, namely
new rabbits. O f course, some of the slower and stupid rabbits will survive too,
because they arehcky. This saved the rabbit population offspring. It is a good
m ixture of genetic material Some slow rabbits are crossing with fast, some
clever with stupid, ind so on. And nature also throws a wild card from time to
tim e, introducing a mutation into the genetic material of rabbits. The resulting
rabbits will be (01 average) faster and smarter than those from the initial
population, becaust faster and clever parents have fled the foxes.”

In the biological process o f evolution of a given population o f individuals,

the pressure o f tht environm ent causes the natural selection. Only the best

adapted individual, have the chance to survive and launch new and better

197

populations. In the evolutionary algorithm, the problem we have solved is the
role of the environment, in which the population of individuals lives. Each
individual represents a potential (possible) solution to the problem PenaOO], As
in the biological process, the evolutionary algorithm gradually produces better
and better solutions. It follows that the evolutionary algorithm can be used to
solve optimization problems.

The optimization process involves searching through the potential problem
areas to find the best solution. An example of an optimization problem might be
scheduling the work of the aircraft crews. Having a scheduled flight schedule
for certain types of aircrafts, one o f the tasks is to design weekly crew
schedules. Every day the crew must be allocated working time consisted with
related flights and met the restrictions such as maximum total air time,

minimum rest time between flights,... Then, taking into account the one-day
schedules, they must meet further restrictions, such as night rest or return to the
home port. The aim is to minimize the amount o f money paid so the crew,
which is a function o f time spent in the air, length of working time, guaranteed
minimum hours of flight,... [Wolsey98],

In real applications, the space for potential solutions is usually so large that
it is not possible in a sufficiently short (real) time to check all possible potential
solutions to choose the best one. Therefore, in such cases, it is reasonable to use
probabilistic techniques that use random selection as a tool to direct the search
process. Evolutionary algorithms are just one such technique that has been
successfully used in engineering practice.

The optimization problem can be briefly written down as finding the value

of the variable x contained in a given set X, at which a predefined function ,/(*)
of the variable x takes the best value. The function /() , referred 10 as the target
function or quality function, measures the goal to be achieved. For example, the

goal may be to minimize costs or maximize profit. In practice, lhere are often
many divergent goals. The set X is defined by a collectioi of problem

constraints, such as resource availability and order size. Most classical
optimization algorithms use a deterministic procedure to approa;h the optimal
solution. This procedure usually begins from a certain solution (the initial

point), and then, based on local information, determines the direction o f the
search to seek the optimal solution. Then it is a one-way search for the best
solution. In order to avoid the local minima problems, the above procedure is
repeated a certain number of times. Classical algorithms differ in the main way
in determining the direction of search. These algorithms include direct and
gradient methods. Direct methods for determining the direction o f search use
only the values of the objective function and the constraints. Gradient methods
use the concept of the first and second derivative of the function o f the goal or
constraint [0duguwa05], The basic difficulties in using classical methods are as

follows:

• The convergence of the algorithm to the optimal solution depends on the
choice o f the initial point,

• Most algorithms tend to get stuck in a suboptimal/local solution,

• An algorithm that can be effective in solving a given optimization
problem may not be as effective in solving another problem,

• Algorithms are not effective for use with discrete search space
problems,

• Algorithms usually are not effectively used on parallel machines.

Evolutionary algorithms deal with most of the difficulties encountered with
the use o f classical algorithms. Evolutionary algorithms have a unique ability to
adapt easily and can be used to solve complex nonlinear and multidimensional
engineering problems. Their quality does not depend on the problem, it does not
matter its structure or variability.

The basic features o f evolutionary algorithms that distinguish them from
other methods are as follows [Goldberg03]:

• They do not directly process the job parameters, but their encoded form,

• They search, not from a single point, but from a certain population,

• Use only the target function, not its derivatives or other auxiliary
information,

• Use probabilistic rather than deterministic selection rules.

199

To be able to speak freely about evolutionary algorithm, one must acquire
knowledge o f the terminology derived from genetics. These concepts include,
among others, chromosome, which is a sequence of ordered elementary units
called genes. The chromosome is a genotype, and its unencoded counterpart is a
phenotype. The space in which the algorithm works is calltd the population and
consists o f individuals whose characteristics are determned by the genotype
record. To be consistent with the theory of evolution, an eement is still needed
to determine the degree of adaptation of the individuals, which will allow them
to survive better adapted and thereby eliminate the weiker units. The next
generations of individuals arise through selection, crossing and mutation.

The task of a genetic algorithm is to model the process by imitating the
natural course of evolution. In each evolutionary step, called the generation, the
chromosomes are decoded and evaluated according to a predetermined quality
criterion called adaptation (the function of adaptation can be, for example, the
objective function), and then selection is made to eliminate the worst evaluated.
Individuals with high adaptability are subject to mutation aid recombination by
crossing operator. Selection alone does not introduce any n6W individual into
the population, i.e., no new points are found in the search ioace, but such points
are introduced by crossing and mutation. By crossing the evolutionary process
can move towards promising areas in the search space Mutation prevents
convergence to local optimum.

As a result o f the operation of the crossing and muation operator, new
solutions are created, from which the next generation po>ulation is built. For

example, a certain number of generations may be requred to complete the
algorithm, or a satisfactory adjustment level may be reachei.

An example of flow chart for these steps is shown on fig. 7.1.

200

Figure 7.1. General scheme o f a Genetic Algorithm

7.2.1. Encoding the individual candidates

When creating an evolutionary algorithm, from the very beginning there
may be problems - for example, with the way the coders of individuals. The
most popular is the binary code. The only thing to keep in mind is to find a
sufficient number of bits to encode the information. It is always an important
issue to choose the right representation of individuals. This is important because
it turns out that some problems, which are difficult to solve with the
representation data, can be much easier when choosing other representations.
Classic genetic algorithms use representation in the form of single-layer binary
strings. For parametric optimization with continuous domains, the
representation can be in the form of real numbers. Then genetic operators
operate directly in the search space. In general, choosing the right
representation for the problem for which the algorithm is designed remains (so
far as well as the construction of the appropriate genetic operators) a kind of art.
Choosing good representation is just as difficult as finding the right algorithm

2 0 1

to solve a problem [Whitley97], Moreover, it has also been shown
[Radcliffe95] that all representations are equivalent if they are considered in
terms o f all possible problems. So we can think that the best way to determine if
the correct choice is to be an experiment is to make sure that the selected
representation is better than the other representations.

The most commonly used coding methods for individuals are: binary
strings and real numbers.

7.2.2. The adaptation function

In evolutionary algorithms, the adaptation function is a fundamental
element that links the evolutionary algorithm to the problem solved. Its main
purpose is to evaluate the individuals in the population and to distinguish them
in such a way that better individuals have a better chance of moving to a new
population and thus passing on their genetic material to the next generation. At
this point you also need to distinguish the cost function that occurs in many
issues from the adaptive function (the objective function), which is generally
created using the cost function, but may also include other factors. As an
example, we can list constrained optimization tasks where appropriate
unacceptable (non-compliant) solutions should be evaluated.

Then the adaptation function is based on the use o f the penalty function
[Michalewicz96] and includes additional factors related to the non-compliance
subjected to the constraint problem. Another example may be multi-criterion
optimization, where the adaptive function can be created as a weighted sum of
cost functions for particular criteria, or by giving individuals the appropriate
rank associated with their “non-neglect degree” (i.e. Pareto optimization)
[Goldberg89], For optimization tasks without limitation, the cost function
equals the adaptation function To determine the value of the adaptation
function for each individual (binary form), the corresponding genotype of the
individual should be determined from the corresponding phenotype.

Choosing an adaptive function is not an obvious thing because many tasks

are more natural in term s o f m inimizing a certain cost function than maximizing

it. To convert a maximization task to a minimization task, we can just take the
opposite value of the cost function.

7.2.3. Selection

In order to create a new, better population, genetic operations are
performed on individuals selected from the “parental” population. Selection,

also referred to as reproduction, is the procedure of selection from the
population o f certain individuals to create a new generation in the evolutionary
algorithm. The selected individuals have usually the highest value of adaptation
to the parent population. The probability of choosing a particular individual
depends on its adaptability. The greater the adaptation the person has the greater
chance that he will be chosen for the new generation. Reproduction in
evolutionary algorithms is closely related to the two most important factors:
preservation of population diversity and so-called selective pressure. These
factors are, in a sense, dependent on each other because increasing the selective
pressure reduces the diversity of the population (and vice versa). Too much
selective focus (i.e. concentrating the search on the best individuals) leads to
premature convergence [Booker87], which is undesirable in evolutionary
algorithms because the algorithm can get stuck in the local extremity. On the
other hand, too little selective pressure causes the search to become almost
purely random.

The purpose o f the selection mechanisms is to maintain a balance between
these factors [Michatewicz92], This selection process can be made usifig
several methods [Goldberg89] including:

• the roulette method,

• the stochastic with replacement method,

• the tournament method,

• the ranking method,

• the elitist method,...

2 0 3

a) The roulette selection method

There are many selection methods. The oldest (best known) method is the
roulette method, also called proportional reproduction selection. In this method,

the likelihood of drawing an individual is directly proportional to the value of
its adjustment function. Each individual responds to a roulette wheel sector with

a size equal to the value o f adaptation o f a given individual divided by the sum
of the adaptation of the whole population. Whenever roulette wheels are played,

individuals are selected for the new population, and better coded individuals
add more descendants to the next generation.

In the roulette method, the intensity o f selective pressure decreases with
successive generations, as more and more of the offspring have similar
approximation values, which makes it difficult to approximate such an
algorithm. This is a straightforward method and produces fairly satisfactory

results. However, it has disadvantages such as:

• Too early elimination from the population o f individuals with a very low
value of adaptability. This may lead to too early stop o f the algorithm.

• The ability to use the roulette method only for one task class, i.e. only to
maximize (or only to minimize).

b) The stochastic sampling with replacement method

This method uses a probability distribution p (i) of the integer index i of

the sample in the population (/' = 1 ,2 ,...,TV) and its cumulative distribution

cp (i) = ^ p { j) - From a population of N samples, if we want to select (with

repetition) M samples, the stochastic sampling with replacement method uses

the following steps [Brindle80]:

• For new sample number j (j = 1 ,2 ,...,M), randomly generate a value

uniformly from the range [0, 1]: a e [0, l]

• Find the first index / w ith the cum ulative distribution bigger than a :

i -- min c p (k) > a
t. 12 . V

• Take the old sample number / to be the new sample number j .

The recommended probability function for this method is the relative
fitness, which is:

where / (s,) is the fitness of the sample number It’s easy to prove that, for

non-negative fitness function, the above function satisfies the conditions for a
probability function:

c) The tournament selection method

Tournament selection consists o f dividing the population into ¿-element
subgroups (A-is the size of the tournament - usually 2 or 3) and selecting the
best individual from each subgroup. This can be done by random selection or
deterministic selection. Then the selection is made with a probability equal to 1.
The tournament method is suitable for both maximization and minimization
problems.

d) The ranking selection method

In the ranking selection population individuals are set in turn according to
the function of adaptation - i.e. from the best to the worst adapted. Each
number is assigned a number called rank and denotes its position in the list. The
number of copies of a given individual introduced into a new population is
determined on the basis of a predefined function depending on the rank (for
example a monotonic function).

(7.1)

V7 = 1,2,.. .,TV : 0 < /? (/) < 1.

N

H p (') = L

2 0 5

e) The elitist selection method

The selection methods described above, in particular regarding roulette
selection, may be enhanced by mechanisms that emphasize the behavior of the
best individuals.

In the elitist strategy, emphasis is placed on the behavior of the most
adapted individuals in successive iterations. In the classical genetic algorithm,
there is a situation where the best individuals do not get into the new
population. The elite model is supposed to prevent this [Michalewicz92]
because the best individuals are introduced into the next generation without the
selection procedure. This is the case when the population with the best
adaptation value loses by the population, then the inserted chromosome
replaces the worst individual in the population.

Beside the above selection methods, in [Michalewicz92] many other
modifications are described to enrich the choice for us when dealing with a
specific task. Selection methods can be divided into static and dynamic ones.
Static selection means that the probability o f selection is constant for all
generations, while dynamic selection does not. Another subdivision of selection
methods is distinguished by the extinguishing and preserving methods. In
preservation selection there are non-zero probabilities of selection for each
individual. In contrast, in the extinguishing selection some probabilities can be
zero. Extinguishing selection can be divided into left- and right-extinguishing.
In the left-extinguishing, the best individuals are not allowed to reproduce to
avoid too early convergence. In the right- extinguishing selection, there is no
such rule.

Some selection methods can be called exclusive, which means that parents
can reproduce only in one generation-so the life span of an individual is limited
to one generation. You can distinguish between generational selection and on-
the-fly selection. In the generational selection, the parents' set is constant until a
new population is created and only then the exchange is performed In the on-
the-fly selection, the descendants replace the parent as soon as they are created
[M ichalewicz92]

Another technique that can be used to improve the selection quality is the
target function scaling. Target function scaling is used to prevent premature
convergence of the genetic algorithm, where the best but not yet optimal
chromosomes dominate the population. Also in addition, in the final phase of
the algorithm, where the population contains individuals quite similar to each
other, the average adaptation value is little different from the maximum. Scaling
o f the adjustment function can then prevent the average and the best individuals
from receiving nearly the same number of descendants in the next generation,
which is undesirable.

Scaling is based on a proper transformation of the adaptation function. The
basic scaling methods are linear scaling, sigma-truncation scaling and power
law scaling [Goldberg89],

Linear scaling is the transformation of the function/ to the fo rm / by linear
transformation with the formula:

The coefficients a and b should: keep the average adjustment value
unchanged and set a maximum value of scaled adaptation at the Level o f the
specified average multiplicity. These two conditions together ensure that an
average individual of the population generates on average one child, and the
best of all - number of children is proportional to the fitting function.

Linear scaling works well, except when the function / takes negative
values. In that case, we can use the sigma truncation scaling. Transformation of

the function/ to the fo rm / is done according to the following relation;

where: f mean is the mean value o f the fit function in the population, c is a small
natural number (usually 1 to 5) [Michalewicz92], c r - i s the standard deviation

of the population. The negative value / ' is assumed to be equal to zero.

Power law scaling raises the function of adaptation/ to a fixed power k :

f ' = a f + b (7.2)

/ ' = c -(/ - (/ _ - < r)) (7.3)

(7.4)

2 0 7

The value of £ is a number close to 1 and depends on the problem in
question. It may need to be changed in successive generations - in order to
“stretch” or “pull” the range as desired.

7.2.4. Crossing and mutation

The selection procedure in evolutionary algorithms is the first step in
creating a new generation. However, in order for newcomers to be not only
copies of individuals from the previous generation, it is necessary to use genetic
operators to modify the individuals selected by the selection process. In general,
the operators used in evolutionary algorithms can be divided into two groups.

The first one is unary operators, that is, acting on a single individual. These
operators are referred to as mutations. According to biological literature
[WebMutation], mutations are changes in the normal DNA sequence of an
organism caused by the action o f chemical and physical factors or DNA

replication errors. Mutations occur in two forms: point mutations that involve a
single change and larger mutations for longer DNA sequences. Major mutations
include: deletions (consisting in loss of DNA sequences), insertions (occurring
as a result o f insertion of additional bases from another part o f the
chromosome), rearrangements (i.e. reverse mutation in which a fragment o f
DNA sequence is cut and then incorporated into the same place but opposite
orientation). Most mutations in the natural world have been transposed into
evolutionary algorithms.

h I o I o 11 1 •»! i loTH "■ ► 11 1 o I o 11 11 1 o I oTTl
Figure 7.2. An example o f a single-point mutation

The most common mutation operators include: uniform mutation, border
mutation, unequal mutation [Michalewicz92], These operators are performed on

the gene population with probability Pmui £ [0, 1], whose value :s one of the

2 0 8

parameters o f the evolutionary algorithm. The mutation operation involves
drawing a random number from the range [0; 1). Where for they-th gene in the
;-th person drawn the number smaller than P\tut then this gene is mutated. The
simplest mutation scheme (with binary representation of individuals) is to
convert the value of the selected gene from 0 to 1 or vice versa, and is shown in
Fig. 7.2.

When representing an individual in the form of a sequence of real numbers,
the procedure is analogous except that the new value is drawn from the given
range o f values.

The second group of genetic operators used in evolutionary algorithms are
multi-arguments operators, called recombinant operators (crosses). From a
genetic point of view, recombination is the process that leads to new genetic
combinations in a DNA molecule (chromosome) by cutting and reuniting
existing DNA molecules (chromosomes) to form cross-over crosses. In
evolutionary algorithms, the crossing operation is performed on a population

with a probability Pcmss e [0; l] and consists in drawing for each individual the

random number in the interval [0; 1). In the case of an i-th random number

smaller than P ^ , , the i-th individual is selected for crossing. In the

evolutionary algorithms, the simplest model of crossing is the so called one-
point crossing, whose graphical scheme of operation (for binary representation
of individuals) is shown in Fig. 7.3.

In general, this operator creates two children, two of which are parental,
and is defined for single-layer chromosomes as follows Let the individuals

x: = (v ,,...,v ni); and .v. = be the parents (selected individuals) to

I I
— ^tïïîTTTilo h i

i

Figure 7.3. Single-point crossing between 2 chromosomes

2 0 9

cross. Then, after drawing the cut point k from the interval [l,/» — l] (this also

implies that the specimens must be of the same length) and crossing the
following children:

x; = (vu . . . ,vk, y k+u. . . , ynl); x) = (^ , . . . ,y k ,vk+l,. .. ,v m); (7.5)

The natural extension of this method is the 2-point crossing method, which
is shown on Fig. 7.4.

I
IjöTTf

I
0 1 1 1 0 JS

H Ui i i i
i i i i

Figure 7.4. Double-point crossing between 2 chromosomes

Using the mutation and crossing operators can lead to the formation of
degenerates, i.e. descendants not belonging to original domain D. This is
especially not the case for restricted tasks.

Various types of repair algorithms that depend on the problem are used to
deal with this. In addition, many other recombinant variants have been
developed in the field of evolutionary algorithms to ensure efficient exchange
of information between two chromosomes. Requesting to meet this condition
causes that crossing operators are often tailored to the problem solved, reducing
their versatility.

A typical example of recurrence-dependent recombination operators is the
PMX (Partially M apped Crossover), CX (Cycle Crossover Order), and OX
(Order Crossover) [Michalewicz92] solutions.

The importance of mutation and recombinant operators is closely linked to
the type of evolutionary algorithm. In the first versions of evolutionary

strategies, the search was based solely on the selection-mutation scheme
[Back91], Recombinant actors, on the other hand, play a leading role in genetic

algorithms and genetic programming.

' 1)

7.2.5. Stopping condition

After genetic operations, the next generation of individuals will be
evaluated and the stop condition will be checked

Determining the condition of stopping the algorithm causes many
difficulties, so special criteria have been developed. The most commonly used
criteria are the criterion of satisfactory level of adaptation function and
minimum rate of improvement. In the first case, the stopping of the algorithm
takes place when the value of the adaptation function set by the designer is
reached, while the second algorithm stops when the best value of the solution is
not improved for a sufficiently large number of generations.

One should mention here the basic theorem in the theory of genetic
algorithms, namely the theorem on schemes. It says that narrow, low-order
patterns and well adapted in successive generations tend to grow exponentially.
It is therefore necessary to provide a definition o f the schema here. The scheme
is nothing but a set of chromosomes in which the values of individual genes are
the same as the values of the genes of similarity pattern on particular positions.
This is shown in Fig. 7.5.

1 0 * 1 1 1 . 1

Figure 7.5. The schema and 4 possible combinations o f chromosomes

The rank of the schema is the number of zeros and one in the schema, i.e.
the number of genes with a value different from the character. For the
schema in Fig. 7.5, the rank is 6.

In turn, the span of the schema is the difference between the right-most and
the left-most positions of the 0 or l values. The span of the schema in Fig.7.5 is
8 — 1 = 7.

21 I

From the theorem on diagrams comes the so-called the hypothesis of
bricks. It says that genetic algorithms work, based on the sequencing of genes,
called bricks. It is important that the genes in the chromosomes are arranged in
such a way that the ones located close together are mutually dependent. In this
way, the bricks of the gene sequences that are bound to each other form a new
population in which new individuals, through the links between gene groups,
carry more valuable information.

7.3. APPLICATIONS OF GENETIC ALGORITHMS

Genetic algorithms can be used to solve various difficult classical problems
such as the problem of a salesman or the transport problem.

In case of the salesman problem, which belongs to the so-called difficult
NP problems, that is, with the increase in the number of cities that he would
have to overcome, exponentially grows the time needed to find a solution. This
can be solved by generating all the permutations of all cities and to sum the
distance between cities for each permutation. Then compare the results and
choose the shortest one.

On the surface it is very simple and for a small number of cities you can
quickly settle this kind of problem. What do you do when 20 or 40 cities appear

on the route of a salesman? The calculation time increases considerably. The
use of a genetic algorithm in which each route is a single individual, using
crossing (route interchanges), mutations, and selection and adaptation functions
makes it possible to obtain the shortest route relatively quickly [Potvin96],

The transport problem, in turn, is the delivery of a variety of goods or of
one kind from several receiving points to several receiving points. This is done
in such a way that ordered quantities of goods reach, for example, from
warehouses to stores, including stocks of goods in warehouses and the distance
o f stores from stores. In this case also transport costs should be minimized. This
has been described in more detail in [Gen99], where research results also show

that genetic algorithms generate good solutions.

Genetic algorithms can also be used for the problems encountered in the
real world, for example, in automation, mechanics, economics,... especially for
the ones characterized by a very large number of discrete or continuous
variables, the complexity of the search space (many limitations and goals that
may be contradictory). It is well known that the use of evolutionary algorithms
in flexible production systems, particularly in relation to operational control.
The example case o f using genetic algorithms in structural mechanics is
described in [Pieczara04], It presents the use of genetic algorithms for solving
direct problems, optimizing the cooling tower shell and identifying in
mechanical systems. There are also attempts to apply a genetic algorithm to the
design o f hydraulic systems. It is also possible to use genetic algorithms to
schedule tasks and allocate resources in networks and computer systems, as
well as in production systems. Genetic algorithms can also be used for
problems related to the economy. Practical examples of such use are provided
in [Maschek05],

These problems can change in time (be dynamic), which entails the need to
quickly get good solutions. An important area of application of evolutionary
algorithms is. the scheduling and planning of industrial processes. Scheduling
issues where resources need to be allocated to a task collection are usually
difficult to solve due to the presence of multiple constraints and complex
product structures. The mathematical programming techniques used here
usually allow for solutions only for small problems. In most genetic algorithms
for scheduling problems, the whole schedule is encoded by the chromosome
(the chromosome stores the coded schedule and thus determines the order of
execution of the individual operations), which requires the use of appropriately
designed genetic operators to produce the desired chromosomes in successive
populations.

Another example of industrial use is the use of genetic algorithms to
control the fermentation of beer [CarrilloO 1]. The genetic algorithm is used here

to adjust the temperature profile of the mixture over a set period of time.

Evolutionary algorithms have also found quite widespread use in medicine.
Most medical decisions can be formulated as searching in a certain space. For

213

example, a doctor is looking for the best treatment in the space of all possible

ways [Yu97], The search cases in medicine are usually very large and complex.
The decisions are based on clinical tests that provide huge amounts of data.

Based on this data, one final decision must be made. Evolutionary algorithms
are used in medicine to perform tasks that can be divided into three groups
[PenaOO]:

1. Data mining: is the process of finding patterns, trends, and regularities
by examining large amounts of data [Foyyad96] mainly for diagnostics
and forecasting. In medical data mining, evolutionary algorithms are
usually used to find the values set by the designer so that the searched
data is interpreted optimally.

2. Signal imaging and processing: Many medical data is expressed by
images or other signals. Evolutionary algorithms are used here to
improve the performance o f signal processing algorithms (i.e. filters)
by finding their optimal parameters. They can also be used to directly
derive useful information from the data provided.

3. Planning and scheduling: Evolutionary algorithms are particularly well
suited for solving scheduling and scheduling problems. An example
may be the problem o f patient scheduling, undergoing various medical
procedures and the need for consultation of various specialists, in order
to optimize patient waiting time as well as device utilization.

7.4. EXAMPLES

7.4.1. Nonlinear function maximum point search

The given (nonlinear) function/ may have one or more variables. We need
to specify the values of variables for which the function/ achieves extreme, i.e.
the minimum or maximum value. The maximization task can be easily
converted to a minimization task and vice versa. Optimization is the
determ ination o f the optimal (i.e. the best, the best) solution regarding some

chosen criteria for a problem, using m athem atical (num erical) methods.

We assumes that R is the set of all solutions to the problem in question.
The point xopt in the space R is a global maximum if:

The more frequently problem (easier to solve) is to find xiocai for which:

This problem is defined by the local maximum. Classical optimization
methods are usually local maxima. In many practical applications there are
difficulties in using traditional optimization methods. Most have a local reach.
Their mode of operation depends on the existence of the derivatives and they
are not sufficiently resistant to discontinuities, extensive multimodality or
interference in the searched space [Michalewicz92].

In this example, we consider the following nonlinear function as shown on

Fig. 7.6 in the domain [— 10,10] x [— 10,10]:

(7.6)

V* 6 (xlocal - s ,x local + e) : f (x local) > f (x) (7.7)

, . sin (xV sin (v)
z(x,y) = 0.02-x —0.05 •>> + — ^ ^

................................ x y
(7.8)

0.8 ..

10

I-igure 7.6. The shape o f the nonlinear function in the selected domain

2 1 5

This is an example of a nonlinear function with many local minima and
maxima, which is more difficult to find the global extrema of the function.

With the genetic algorithm approach, we use the pair of the real input

variables x andy () as chromosomes. We starts from the initial population

of 100 points (i.e. 100 chromosomes). This population is obtained randomly
using an uniform distribution over the given domain. For each chromosome, we
determine its adaptation by calculating the corresponding target function at the
point encoded in that chromosome. The roulette selection method with 2 elite
individuals is chosen.

For the crossing operator, we use the random linear operator as:

• Let parents are and (x2, y 2),

• Randomly generate a step coefficient a e [-0.25; 1.25],

• Generate the children:

(xci>yei) = « • (w i) + 0 - «) - (^2 .^ 2)

(*c2>yc2) = 0 «) ■ (*1») + <« • (*2>?2)

• Bound the children to the domain if needed.

For the mutation operator, we use also random linear operator as:

• Let parent is (xx, y l),

• Randomly generate step coefficients ccx,a y e [—0.25; 0.25],

• Generate the child: (xcl,^ cl) = (x, (l + a v) , y x (l + orv))

• Bound the child to the domain if needed.

W ith the above configurations and methods, we achieved the following

results:

• Best estimated maximum p o in t : (xnpl, ynrl) - (0.0538; - 0 012)

• Value o f the function at the estimated optimal point:

/ (v ^ H - 0042

gI 09

| 0W
i
| 04

0 75

07

0 65
0 S 10 15 20 25

Number of generation*

Figure 7.7. The change o f maximum value found along the generations

In the Fig. 7.7 we have the change of the maximum value found along the
generations. At the random begin, the maximum value was only ~0.67, after 5-
10 generations it was corrected to value sub-optimal already.

In the Fig. 7.8 the best found point is presented on top of the original
function to show the very high quality of the results.

Best solution

Perform « n e t of G A fbest value)

I

2 1 7

7.4.2. Travelling Salesman Problem

The next example in this chapter is a classical problem so called the
Travelling Salesman Problem (TSP). In this problem there are N cities that the
salesman has to visit. The target is to visit each city exactly once and get back
to the starting point. The cost of traveling between each pair of cities is known.
Find the best route that each city is visited exactly once and the total cost of
travel is minimal.

The input map can be defined using a full graph G = (V,E) , where

|F| = A f- number of cities, each vertex represents a city, and each edge

connecting a pair of vertices represents the connection between the

corresponding cities. Each edge has a weight equal is the traveling cost of the
connection. The TSP requires a closed path passing all the vertices exactly once
(except the starting vertex), i.e. the problem o f the salesman can be formulated
exactly as finding a Hamiltonian cycle of minimum length for a given graph.

An example of graph and the corresponding weights matrix W is presented
in Fig. 7.9. Please note that the main diagonal of W contains infinity since a
vertex is not connected to itself.

- 2 4 1 - '
2 - 3 2 -
4 3 - 5 2
1 2 5 - 4
- - 2 4

Figure 7.9. Example o f a graph (undirected) and its weights

For this example, the optimal solution is the path 1-2-3-5-4-1. In total, the
(jV -IV

possible number of paths to be considered is — -— , it means the TSP is a

pessim istic exponential computational complexity

We can define the fitting function based on the path length, and
chromosomes of length / = N let be the permutations of vertices. However, the
standard crossing and the mutation does not work since their result is generally
not a Hamilton path. Therefore, it is necessary to design crossing and mutation
operators operating on permutations.

For example, we define and use the so called inversion mutation, where we
randomly choose two positions in the chromosome and reverse the order of
vertices between them:

1 2 3 4

CD»

7 8

J
1 2 5 I 4 3 6 7 8

(a) (b)

Figure 7.10. The crossing operator for traveling paths

Inversion in permutation is equivalent to changing only two edges in a
cycle (we assume a symmetric problem). This is the smallest change that can be
made by a mutation operator.

For the crossing operator, we can use the PMX (Partially Matched
Crossover) [Goldberg85], which is as follow:

• Select two crossings at random, for example we have two chromosomes
as in 7.11a. Copy a (randomly) selected segment (for example 7.11b)
from parent Pi

219

1 2 '3 4 5 I_6j 7 00

co 5 ! 6

1 4 5

00CME

6

(a) (b)

0 0 t n 4 15 i j 8

| I\ j 7 3 4 2

0 0 [H 9 P : □ □
(c) (d)

0 0 0 0 W ; 8 0
(e)

Figure 7.11. The mutation operator to create the Is' child for the two paths 1-
2-3-4-S-6-7-8 and 1-4-5-7-3-2-8-6

• Looking at the same segment in P2, find those cells that were not copied.
(We need to put them outside the copied segment). For the example ir
7.11 it’s the cells containing ‘7’ and ‘2’ in P2. For each o f these elements
/ determine what element j was copied from Pi to its place (in place of

‘7’ from P2, Pi has 4; in place o f 2 from P2, Pi has 6).

So we have pairs (i, j): (7, 4) and (2, 6). For each pair, we try to
place i in the position occupied by j in the parent P2. For (7, 4), the
location for ‘4 ’ in P2 is number 2, tracking back to the child
chromosome (in Fig. 7.11b), the 2nd location is still free, so we will
place the ‘7’ there. Analogically, the cell ‘2 ’ will go to the location of
cell ‘6’ in P2, i.e cell number 8

After doing so for all cells from the copied segment, ill the

remaining cells (here they are cell ‘1’ and cell ‘8 ’) are copied from P2.

The second child is generated in analogical way by replacing the

parents P2 and Pi and is shown on Fig. 7,12.

By using this method, from the two chrom osom es 1-2-3-4-5-6-7-8 and 1-4-

5-7-3-2-8-6 we have 2 new child chromosom es 1-7-3-4-5-6-8-2 and 1-6-5-7-3-

2-4-8.

1 4 5 05 M 00

CD

(a)

HUM
(b)

0 0 5 7 E : □ □

1 | 2 | 3 | 4 | p p | l 7 l 8

(c)

6 I 5 17 K Đ 4

(d)

(e)
Figure 7.12. The mutation operator to create the 2nd child for the two paths

1-2-3-4-5-6-7-8 and 1-4-5-7-3-2-8-6

Next is a numerical results example of the problem. In Fig. 7.13, we have
randomly generated locations o f 20 cities. The traveling cost is assumed to be
equal the euclidesian distance between the cities.

City Locations

0 2 4 6 8 10
Figure 7.13. The locations o f 20 cities for the TSP (randomly generated)

2 2 1

Tom 0*»Unc« ■ 5TS42S ("nation -1»

1 ' A

i \ , A - • \
' ■ ' / \ \

L / N . \ \
/ •». \ \

r x \

• i \ •f / \ \
[/ t 1 r - V

< / ’ ;

i •

.
I i 1 j

\

\

Ii-

- J
'

'
v

/
.

(a) (b)

Figure 7.14. Intermediate results along the generations o f evolution: a) after
15, b) after 35, c) after 59, d) after 170 iterations

In the genetic algorithm for TSP, we use the population size equal 100,
number of generations is 200. In Fig. 7.14 are some results of the best
candidates found in different generations.

As it can be seen, at 15th generation, the best path found is still bad (others
in the population are even worse), the traveling cost is 57.54 At 35th
generation, the path looks much better, with the cost reduced to 48 26. And
finally, at generation number 170, the best path has the cost only 41 70. And

this is also the final best candidate, it means from generation 170th to generation
200th, no better candidate could be found. The plot o f how the cost was reduced

along the generation is shown on Fig 7.15.

Best Solution History

Figure 7.15. The change in best travel cost found along the generations o f evolution

7 .5 . CONCLUSION

Evolutionary algorithms are now successfully used in solving many real
problems in different areas. The possibilities o f using evolutionary algorithms,
including genetic algorithms, are very broad. It consists of, among others,
conceptual simplicity of these algorithms. The characteristic feature of these
algorithms is that they seek the solution from a specific population, not from
one point, as is the case with traditional methods, and also because they use the
objective function rather than the derivative function [Goldberg03].

Genetic algorithms are used everywhere where the use of common
analytical and enumeration methods is impractical, for example due to a long
calculation time or too difficult to meet assumptions. So the genetic algorithm
is a global optimization method easy to implement in a wide range of problems.
It seems that in the future the importance of techniques based on evolutionary
algorithms will grow as they allow them to overcome many of the difficulties
that arise with the use of classical methods. Therefore, it is expected that
applications based on evolutionary principles will become more and more
popular.

223

Chapter 8: DEEP LEARNING

8.1. INTRODUCTION

Analysts are changing to the big data concept, which became popular
around 2010, and required much higher performance of specific tasks: the
machine learning process. One of the goals of this process is to create a
computerized method of modeling our world, our knowledge in a good enough
way. Our knowledge database is huge and so diverse that it is impossible to
process all of this information manually. That is why many researchers have
been working on automatic algorithms to capture a large part of this database.

Machine learning solutions, which are the basis o f artificial intelligence,
use automation to recognize and learn interdependencies, especially in
predictive and prescriptive analytics.

Significant progress has been made in understanding and improving
learning algorithms, but there are still big challenges for machine leinung in
particular and for artificial intelligence tasks in general. For example, we do not
have yet algorithms that can understand objects and describe them in natural
language. We do not have algorithms that can interact with most people in daily
works,... Those situations are similar for other AI tasks. Machine learning is
accompanied by several other concepts. The most important are: neural
networks, deep learning and cognitive computing. These technologies will not
only allow automatic and precise predictive analysis o f the gargantuan amount
of data, but in some cases, such as stock market trading, to even create events.
According to various research, in 2020, the market value of smart applications
will exceed 40 billion dollars.

8.1.1. Machine learning - strong support for predictive analytics

Machine learning is a technique in the area of computer science and
statistical modeling, which allows a computer application based on independent

analysis - without having to program it - to predict the results or make
decisions.

Machine learning, which is the basis of artificial intelligence (AI), is
closely linked to data analytics and data mining programming. Both machine
learning and data mining use mathematical algorithms to crawl and search
patterns. Machine learning uses algorithms to detect patterns in data sets and
adjusts program behavior accordingly. Predictive analytics services based on
big data and cloud help developers and data researchers to use machine learning
in a new way.

Figure 8.1. A picture containing ‘‘a car under sunlight

We would like to transform the original input image into higher levels of
representation or linguistic concepts such as “daytime”, “running car”, “parked
car” ,... If the machine intercepts factors that explain the facts we observe, we
can say that the machine understands these facts and even their variations.

Unfortunately, we generally do not have an analytical knowledge formula
for most of our understanding of the world and its variants. High-level
abstraction, such as CAR, can appear in a very large number of possible images
that are very different from each other. The CAR category can be seen as high-
level abstraction with respect to the image space. What we call an abstraction
can be a category (such as the CAR category) or a feature that can be discrete or
continuous (i.e. a video showing a car moving at 60 kilometers per hour). Many

225

lower level concepts are needed to construct a detector. Lower levels are more
directly related to specific perceptions, such as “whether it has a wheel”, “does
it have steering wheels” ... while higher levels are “more abstract” .

In addition to the difficulties related to the relevant indirect abstractions,
the number of visual and semantic categories that we would like the
“intelligent” machine to recognize is quite large. Full (successful) network
learning involves automatic detection of such abstractions, from the lowest
levels to the highest level concepts. We would like the learning algorithms
achieve this discovery with minimum of human effort, i.e. without having to
manually define all the necessary abstractions or to provide a huge collection of
manually prepared examples. Then surely these networks would help to convey
much human knowledge to computer-interpreted form.

8.1.2. Deep learning - algorithms that use neural networks

Deep learning is one o f the types o f artificial intelligence (AI), a sub­
category of machine learning - a technique o f neural networks, whose main task
is to improve the performance of hard problems such as voice recognition,
computer vision and natural language processing. Simplifying, deep learning
can be treated as a way to automate predictive analysis. This technology is
rapidly becoming one of the most sought after areas in computer science. Deep
learning applications include all kinds of big data analytics applications,
especially those focused on natural language processing (NLP), foreign
language translation, medical diagnostics, stock market transactions, network
security, object recognition, machine translation o f speech, or scientific themes.

Over the past few years, deep learning has helped to advance in many diverse
areas such as that for a long time have been for researchers with hard nut to
crack.

While traditional machine learning algorithms are linear, deep learning

algorithms are arranged hierarchically according to increasing complexity and
abstraction. Data must go through several processing layers, so it was decided

to use the term "deep'’ learning. Most modem learning algorithms correspond to
limited architecture (due to the Komogorov theorem). People often describe

their knowledge in a hierarchical manner, with multiple levels of abstraction.

The brain also seems to process information through the stages of
transformation and representation. This is particularly evident in the primitive
visual system [Serre07], with a sequence of steps: edge detection, primary
shapes detection, and progressively more complex visual shapes recognition.

As mentioned in Chapter 6, neural networks are the generic name for
software systems and data structures that are closely related to operations
performed by the human brain. Neural networks typically consist of a large
number o f parallel processors that have their own knowledge and access to
local memory. Typically, a neural network is “trained,” or is fed with large
amounts of data and rules about data relationships. Then the program can
instruct the network how to behave in response to external stimuli or can
initiate a process on its own. Although the neural networks have successfully
learned many problems, they are still considered as “single step” processing
tools. For complicated tasks (starting with computer vision problems, where we
try to recreate our capability in analyzing objects from their images/video), the
classical neural networks could not learn to process a task in a multi-step
manner. Deep networks consist o f multiple levels of nonlinear units such as
neural networks with multiple hidden layers or complex recursive formulas.
Optimizing deep networks is a difficult task, but recent learning algorithms
such as Deep Belief Networks have been proposed that are effective in selected
problems. Later, we will introduce the ideas and the principles for deep network
learning algorithms.

To fully understand .what deep learning is, it is important to first distinguish
them from other important scientific disciplines in the field of AI research.

One of the revolutionary discoveries in the field o f AI related science was
machine learning, in which the computer learns from the supervised experience.
This process usually involves a human operator who assists the machine in
learning by introducing thousands of training examples while manually
correcting any errors that occur

Although machine learning has becom e the dominating area o f AI research,

system s still have some limitations. First, learning process is very time

227

consuming, for example a programmer needs to be very specific about what

features he should look for when recognizing a particular object in order to
implement them into the programs. This is a laborious process, and the success
of the program depends on the programmer's precise definition of the set of
features for a particular object. Secondly, in this way we still can not fully
verify the machine intelligence level, because it is dependent on human
ingenuity, which abstracts the learning process o f the computer.

Unlike machine learning, deep learning is mostly done without supervision.
Among other things, this entails the creation of large-scale neural networks that
allow the computer to learn and think independently without the need for direct
human involvement.

Deep learning does not really look like a computer program, where regular
computer code is written in very restrictive and logical steps. In the case of deep
learning we are dealing with something else, we do not meet many of the
instructions that tell us: “If one is the truth, do the same again” . Deep learning
is not based on linear logic, but on the theory o f human brain work. The
program creates entangled layers of interconnected network nodes. The system
leams by reorganizing connections between nodes following each new
experience. Deep learning methods are designed to find the functions of the
higher levels o f the hierarchy created by the composition of the features of the

lower functions. Automated learning process at multiple levels o f abstraction
enables the system to learn complex functions o f input data mapped to output

data. This is especially important in cases where people do not know how to
define exactly the relationships and can only give examples. The ability to

automatically acquire advanced features will become more and more important
as the types of applications expand and the data collected is increased. The
depth of deep networks refers to the number of levels of nonlinear operations in
the network structure.

Deep teaching has the potential to be a software base capable o f producing
excitement or events in the text (even if not explicitly identified), recognizing
objects in photographs and producing advanced predictions about possible
future human behavior. The advantage of deep learning is that the program

itself builds a set o f qualities for use. Not only does it get faster, but usually

more accurately.

Basic concepts are:

• Machine learning - Automated analytical systems that learn over time
and gain more data. They often use more complex algorithms
(predictive and normative)

• Deep learning - artificial intelligence (AI) algorithms, used in self-
guiding cars, for image recognition and natural language processing.
They typically use neural networks and other complex algorithms.
Memory, reasoning and attention are their key attributes.

• Cognitive systems - usually self-learning systems, which use complex
sets of algorithms to mimic the processes that take place in the human
brain.

Key benefits of deep learning include

• The capability to develop hierarchical models across various types of
data, including text, images, and audio and video.

• Capability to learn from a very large database of examples:
computational time for teaching should be acceptable.

• The capability to learn complex, very diverse functions, i.e. with many
variants that are much larger than the number of training examples.

• The capability to learn with little human input.

• Capability to learn from labeled and unmarked data, where not all
examples contain complete and correct target Values.

• The capability to deduce meaningful patterns and knowledge from huge
volumes of unstructured data.

• Massive parallelism to allow for multiple processing cores - and even
computers to work efficiently with algorithms to maximize
performance.

• Capability to use synergies present in many tasks. These synergies exist
because all AI tasks provide different views on the same basic reality.

2 2 9

An example is the Jane AI from IBM to promote a healthy lifestyle

IBM announced that they have been working on the development of the
Jane AI application based on the Watson cognitive system. The application to

be a personal trainer is designed to analyze data on physical activity and
encourage regular exercise. By using the Watson Conversation programming

interface, Jane AI uses the native speaker's natural language, recognizes
conversation topics, and intends to speak words. The application is based on

information about the number of steps, distance traveled a day, calories burned,
or location needed to determine weather conditions. By analyzing entries

published on social networking sites, you can even get to know your mood,
your motivations, or your personal goals, and encourages you to become active.

In communication, he is based on a wealth o f psychology knowledge, including
theories of attitude change, influence, and personality analysis. The data
collected during the project is intended to help scientists analyze patterns of
behavior related to health. The test phase of the project will be launched after at
least 100 attendees and will last about 10 weeks.

In 2011 Google launched the Google Brain project, which created a neural
network trained with deep learning algorithms, widely recognized as capable of

recognizing advanced concepts.

Facebook has also created the AI Research Unit using deep learning

expertise to support the development of technology solutions that will better
identify faces and objects in 350 million photos and videos each day on
Facebook.

8.1.3. Challenging the training of deep neural networks

Having motivated the need for deep networks, we consider the difficulties
in training them. Experimental evidence suggests that deep network trailing is
more difficult than training classical neural networks [Bengio07, Erhan09]

When compared with typical training algorithms for classical neural networks,
the performance on deep networks, especially the generalization ability' i> quite
poor It was then suggested that, on the basis of classical learning algoithms,
(normally the supervised version) multilayered neural networks vvoald be

converged into a local minimum, whose position is strongly depended on the
initial position And the deeper the network and the more number of nonlinear
parameters the harder to get good generalization.

It has been discovered that much better results can be obtained during the
initial training of each layer, starting with the first layer. The experiments
started with the RBM model [Hinton06] and then similar results are achieved
when extending to the application of auto-coders for each layer training
[Bengio07, Ranzato07, Vincent08], Most o f methods use the same idea: start
with the training of the first layer (for example using RBM or some auto-coder),
then use the output of the first layer (new raw input representation) as input for
next layer, and train that layer with a similar algorithm like for the previous
layers. Once all layers are initialized, the entire neural network can be trained
using a supervised training algorithm as usual. The advantage of unsupervised
pre-training compared with random initialization is shown in [Bengio07,
Erhan09, Larochelle09],

As described in [Erhan09], unsupervised initial training is equivalent to a
regulator: improper initial training causes a limitation to a bad search region in
the space of parameters, i.e. the learning process will converge to a bad local
minimum. On the other hand, other experiments [Bengio07, Larochelle09]
suggest that, for multiple layer networks, poor tuning of the lower layers (the
ones closer to the output) may result in poorer results without initial training. If
there are enough hidden units in the first hidden layer, the training error may be
very low, even if the lower layers are not properly trained, but this may cause a

poorer generalization. When the training error is low and the te st.error is.high,
we call that the network is overfitted.

On the other hand, for larger training data samples sets, a better
initialization of the lower hidden layers can significantly decrease both the

training and the generalization errors. According to actual research, better
generalization will be achieved when all layers are properly tuned.

231

8.2. THE BEST FRAMEWORKS FOR MACHINE LEARNING AND DEEP
LEARNING

Which framework to choose to implement machine learning or deep
learning? It depends on the complexity o f the learning process, the volume and
format of the data, but also the programming preferences. To the popular
frameworks belong: TensorFlow, Microsoft Cognitive Toolkit, IBM Watson,
Spark MLlib, Scikit-leam, MXNet, and Caffe.

The opportunities available to those interested in deep learning and neural
networks have never been so rich.

Frameworks for implementing machine learning and deep learning differ

from one another. First and foremost, machine learning frameworks include a
variety of methods for learning algorithms for classification, regression,
grouping, anomaly detection, and data mining. They may also include methods
based on neural networks. Deep Neural Network Frameworks or Deep Neural
Network (DNN) frameworks cover a variety of neural network typologies with
multiple hidden layers. These layers represent a multi-step pattern recognition
process. The more layers within a network, the more complex features can be
captured for grouping and classification purposes.

Caffe, CNTK, DeepLeaming4j, Keras, MXNet and TensorFlow are the
backbones for implementing deep learning. Scikit-leam and Spark MLlib are
machine learning frameworks. Theano combines both categories.

The more neurons and layers that need to be trained, and the more training
data, the longer it takes. When Google Brain trained its translation models for
the new version of the Google Translate tool in 2016, it conducted training
sessions on many different GPUs. Each of these sessions lasted about one week.

Individual frameworks have at least one characteristic feature. The
advantage of the Caffe package is the use of convoluted, deep neural networks
for image recognition. The Microsoft Cognitive Toolkit has a separate
evaluation library for deploying predictive models that run on ASP.Net sites. In
turn, the MXNet framework has excellent scalability in the context of training
configurations involving multiple GPUs and multiple machines. Scikit-learn

offers a wide range of effective teaching methods. In addition, it is easy to learn
and use. The Spark MLlib framework has high scalability in machine learning.
TensorFlow offers a unique diagnostic tool for network graphs called
TensorBoard.

Each of the described frameworks presents a slightly different approach to
neural network descriptors, with two main concepts in mind: the use of a
graphical description file or the creation of custom descriptions by code
execution.

The more details of each of these frameworks are discussed in following
parts.

8.2.1. IBM ’s Watson

The Watson solution of IBM Watson is based on the supercomputer created
by IBM to answer questions in natural language. Its name is honored by the
founder o f this company, Thomas J. Watson. The supercomputer is being
developed as part o f the DeepQA research project and uses a combination of
algorithms for natural language processing, information retrieval, knowledge
representation, automatic inference, and machine learning. It has 2880 cores, 15
TB o f memory and does not use an Internet connection. As part of his
presentation, Watson appeared in the Jeopardy game show in a three-day
competition February 14-16, 2011. His opponents were: Brad Rutter, who so far
won the most money in this game show, and Ken Jennings, who was the longest
in his unconquerable champion. Watson won this game, with a score of
$77,147. Ken Jennings earned $24,000 and Brad Rutter won $21,600. Main
features proposed by Watson are:

• Dialog in natural language: Enter a data dialogue and discover new
dependencies and information. All you need is a web browser on your
computer or a mobile app for your tablet

• Automated Predictive Analysis: Automatically detect factors that can
affect your business performance

2 3 3

• Instant analysis: Just one click to fully understand the information
derived from the data. With automatic visualizations in the cockpit you
can say more and better.

• Intelligent Data Mining: Discover the most interesting, custom word-
processing paradigms with cognitive processing capabilities that point to
your starting points and direct you to the answers.

• Simplified analysis: Instantly find out what information is hidden in
your data, thanks to the automation solutions that work for you. This
allows you to use the newly acquired knowledge to improve your
business.

• Advanced analysis for everyone: Start using data without carrying out
their complex optimization and no preparation. Advanced analysis
available to anyone eliminates complex and time consuming tasks,
justifying your decisions with reliable data.

• Self-service cockpits: Share the information you find in the cockpit or
infographics, which you can easily develop based on visualizations that
are documented during exploration.

8.2.2. TensorFlow

TensorFlow, a portable library of artificial intelligence and neural networks
from Google, is characterized by good performance and scalability, despite
being a bit slow to leam. TensorFlow has a number of different models and
algorithms that are a heavy burden for deep learning.

The framework is characterized by excellent performance when working on
GPU devices (for training) or TPUs from Google (in the case of forecasting on
a production scale). In addition, the framework provides excellent Python
support, good documentation, and an efficient TensorBoard tool for displaying
and analyzing data flow diagrams describing the computation performed.

The main language needed to use TensorFlow is Python, although the
framework also offers limited C ++ support. Tutorials provided with the

TensorFlow framework include applications for digital handwriting recognition,

image recognition, word sequencing, recursive neural networks, sequential
models for machine translation, natural language processing, and partial
differential equations simulations.

8.2.3. Microsoft Cognitive Toolkit

The Microsoft Cognitive Toolkit is a fast and easy-to-use framework for
implementing deep learning, but has a fairly limited scope of use compared to
TensorFlow. It offers a variety of models and algorithms, excellent Python
support and Jupyter Notebook applications, an interesting declarative
BrainScript neural network configuration language, and an automated
deployment for Windows and Ubuntu Linux operating systems.

On the other hand, until version Beta 1, the framework did not support
M acOS although many improvements have been made to CNTK 2 including a
new memory compression mode to reduce memory consumption on GPUs and
new Nuget installation packages.

8.2.4. Caffe

The Caffe Framework for Deep Learning, which initially served as a
powerful framework for image classification, appears to be stuck on the RC3
version due to the continually emerging bugs and the leaving the project by its
initiators. However the framework still has good quality convolutional neural
networks for image recognition and good support for Nvidia's CUDA GPU, as

'w ell as a simple-network description format. On the other hand, models of this
framework often require large amounts of GPU memory (more than 1 GB) to

run, its documentation still contains bugs, it is difficult to get support, and the
installation process is problematic,, especially with regard to the Python library.
It’s pity for Caffe because of the stagnation in its development.

8.2.5. MXNet

MXNet is a portable and scalable deep learning library selected by Amazon
as the DNN framework. It combines the symbolic declaration of neural network
geometry with the imperative programming of sensor operations. MXNet scales
to many G P l's on many different hosts with almost linear scaling at 85% and

235

boasts excellent speed, programmability and portability. It supports Python, R,
Scala, Julia, and C ++ languages on different levels, allowing you to combine
programming in symbolic languages with imperative programming.

8.2.6. Scikit-learn

The Sickit-leam Framework written in Python offers a wide selection of

effective machine learning algorithms, but beyond deep learning. F a Python
users Scikit-learn is certainly the best of all simple machine learning libraries.

Scikit-learn is a powerful (and extensively tested) machine leamirg library
written in Python with a wide assortment o f well-established algorithms and
integrated graphics. The program is relatively easy to install, learn ane use and
has good examples and good quality tutorials.

On the other hand, the Scikit-learn framework does not include deep
implementation or reinforcement learning, does not offer graphical models or
predictive sequences, nor can it be applied to languages other than Python. With
the exception of minor adventures with neural networks, there are no real
problems in terms of learning speed. It uses the Cython compiler (PythOR-tO-C)
for functions that need to be executed instantaneously, such as internal loops.

8.2.7. Spark MLlib

Spark MLlib is an open source learning machine for Spark, which provides
the most commonly used machine learning algorithms such as clasrification
algorithms, regression, grouping and co-filtration (but not DNN) with tools for
capturing characteristics, transformations, dimensional reduction. It offers also
a selection of tools for constructing, evaluating, and tuning machine learning

pipelines. Spark MLlib has functions for saving and loading algorithms, models
and pipelines, data handling and linear algebra calculations and statistical

calculations.

The Spark MLlib framework was written in Scala and uses the Breeze
linear algebra package Breeze relies on the netlib-java library for optimized
numerical algorithms, although this means optimized CPU usage in open source
distributions. Databricks offers customized Spark clusters that are compatible

with GPUs capable of potentially up to 10 times the speed needed to train
complex machine learning models using Big Data.

8.2.8. Best in class

Which framework to implement machine learning or deep learning to
choose for a specific task depends on the complexity of the machine learning
process, the volume and format of the training data, the computing resources,
and the programming language and programming skills preferences. It may also
depend on whether you prefer to define models using code or configuration
files.

Before starting your own modeling practice, however, it is important to
check that any pre-trained machine learning services from Google, HPE, or
M icrosoft Azure clouds will efficiently process data, regardless of their audio,
text, or graphics format. If they do not work for the selected data, simple
available statistical methods should be tested before trying out basic machine
learning training and, ultimately, if nothing else works, deep learning training.
In this case, the principle is to maximize the simplification of the analysis, but
no greater than justified.

Choosing frameworks for implementing deep learning from Microsoft
Cognitive Toolkit, MXNet, and TensorFlow is a much more difficult decision.
The selection to the three programs does not make it easy, because all these
frameworks are a good way to offer similar capabilities.

The Microsoft Cognitive Toolkit now has APIs for Python and C++ as well

as BrainScript configuration language. If you prefer to. use configuration files
from network topology programming, the Microsoft Cognitive Toolkit may be
a good solution. On the other hand, this framework does not seem to be as
mature as TensorFlow and does not support the MacOS operating system.

MXNet provides support for Python, R, Scala, Julia, and C++ languages,
but the best APIs are for Python only. The MXNet framework has demonstrated

good scalability (85% linearity) across many different GPUs on many different
hosts.

2 3 7

TensorFlow is probably the most mature of the three frameworks
mentioned. It is a good choice if someone writes code in Python and learning
the language is not a challenge. TensorFlow offers basic backbone elements
that can be used and provide precise control, although they also require writing
a neural network code. There are three simplified APIs that work with

TensorFlow in this regard: tf. contrib. learn, TF-Slim and Keias. The

last feature in favor of TensorFlow is TensorBoard, which is useftil for
visualizing and analyzing data flow diagrams.

8.2.9. The future of deep learning

Deep learning is a very promising field of learning that can mike self-
managing cars and robotic valets a reality. However, the prospects for
development are still limited, but what can be created now by the use of deep
learning technology, several years ago was unthinkable and continues to grow
at an alarming rate. It is the ability to analyze huge data sets and apply deep
learning in adaptive computer systems to experience, rather than rdying on
human programmers, to lead to breakthroughs. It can take the form of
discovering new drugs, developing new materials, or even creating robots with
more awareness of the surrounding world. Perhaps this anticipated
breakthrough is an explanation of the fact that Google has recently been in the
frenzy of buying, and at the head of the shopping list are robotic companies.
Google bought out eight robotics companies in a matter of months

8.3. SELECTED NETWORKS FOR DEEP LEARNING

Inspired by the complex brain structure, researchers have been training
neural networks including the deep networks [Bengio07], But for che deep
network, before the work of Hinton in [Hinton06] introducing the Deep Belief
Networks (DBNs), the training usually got the bad results due to network
overlearning [Haykin99], Hinton and others proposed a unsupervised learning
algorithm for each layer being a Boltzmann machine (RBM). Similar
algorithms have been proposed after that, but based on the same idea.

Because deep networks can be seen as a series of processing steps, the
obvious question becomes “What data representation should be used as the
result of each stage?” . How the information is transferred between these stages?
Many research on deep architecture have focused on these intermediate
representations: learning representations of data using RBMs [Hinton06], auto­
encoders [Bengio07, Ranzato07, Vincent08J. These algorithms can be seen as
learning to transform one representation (starting from the previous stage) into
another while conserving (or even enhancing) the variation factors presented in
the data. Once you have found a good representation at each level, we can use it
to initiate and successfully train a deep network using supervised optimization.

Each level o f abstraction found in the brain consists o f “activation” (neural
stimulation) of a small subset o f a large number of functions that generally do
not mutually exclude each other. Because of that they form a distributed
representation: information is not localized in a particular neuron but distributed
in many.

Many existing machine learning algorithms are locally in the input space:
for learning functions that behave differently in different areas o f the data
space, they require different tuning parameters for each o f these regions. Unlike
learning methods based on local generalization, the total number of patterns that
can be distinguished using a distributed representation can be exponential with
the representation dimension.

8.3.1. Energy-Based Models (EBM) and Restricted Boltzmann Machines
(RBM)

Energy-based models associate a scalar energy to each configuration of the
interested variables. The target of learning process is to achieve maximum or
minimum of this energy. Energy-based probabilistic models define a probability
distribution through an energy function, as follows:

e-E(x)

p (x) = Y ^ m (8l)
X

2 3 9

An energy-based model can be trained with gradient based algorithms For
example we can define the log-likelihood and then the loss function as being
the negative log-likelihood will be used in the training process:

(8 .2)

£(6,V) = - C (6 , V) (8.3)

similar to the learning algorithm of neural networks described in Chapter 6,
where for a 6 - the parameters of the model:

Z loS86 N xlr eV 8 se
(8.4)

When the object contains some non-observable parameters, denoted as h
(hidden) we can formulate as:

-E(x,h)

(, - 5 >

With this hidden part h, the Eq. (8.1) can be converted to:

e-Hx)

<8-6>

with T (x) = - l o g Z e E(xh) is called the free energy function.
h

The data negative log-likelihood gradient then has a particularly interesting
form:

_ c \ og P(x) = ^ _ y c n x)
86 86 Y 86

Notice that the above gradient contains tw o terms, the first term increases

the probability o f training data (by reducing the corresponding free energy),

while the second term decreases the probability o f samples generated by the

..40

model. It is usually difficult to determine this gradient analytically, as it

oF(x)
involves the computation of EP This is nothing less than an

56

expectation over all possible configurations of the input x (under the
distribution P formed by the model).

The first step in making this computation tractable is to estimate the

expectation using a fixed number of model samples, which are denoted as A/".
The gradient can then be written as:

dlogpQc) _ S F jx) 1 y ôT(x)
de * de \ u \ ^ de

(8.8)

where we would ideally like elements x o f A i to be sampled according to P.
The problem now is how to extract these samples A/". The Markov Chain

Monte Carlo methods are especially well suited for models such as the
Restricted Boltzmann Machines (RBM), a specific type of EBM.

Boltzmann Machines (BMs) are a special case o f log-linear Markov
Random Field (MRF), i.e., for which the energy function is linear in its free
parameters. By having more hidden variables (also called hidden units), the
modeling capacity of the Boltzmann Machine (BM) can be increased.
Restricted Boltzmann Machines are BMs, which have no connections between
2 hidden variables and between 2 non-hidden variables (similar to the
requirement of feedforward neural networks, where there should not be no
weight connected neurons belonging to the same layer). A graphical
presentation of an RBM is shown in Fig. 8.2, where the non-hidden variables

are presented as v, nodes and the hidden variables are presented as ht nodes.

241

The energy function E(v ,h) of an RBM can be defined as:

E(v,h) = - b r v - c Th - h r Wv (8.9)

where W represents the weights connecting hidden and non-hidden units and b,
c are the offsets o f the non-hidden and hidden layers respectively.

This translates directly to the following free energy formula:

W = (gl0)

> K

Because in RBMs, non-hidden and hidden units are conditionally
independent, then:

p(*iv) = n ^ i v)/
p (v \ h) = Y \ p (v j \ h)

j

In the commonly studied case of using binary units (where v; and

ht e{ 0 ,l}) we obtain from Eq. (8.4) and (8.9) a probabilistic version o f the

usual neuron activation function:

P(hi = \ \ v) = sigm^Cj+WjV) (8.12)

P (v^ = l |/?) = sigm [bj + W'jh) (8.13)

The free energy of an RBM with binary units further simplifies to:

T (v) = - b Tv - X log ̂ 1 + e(c,+W‘v'> j (8.14)
/

a) Update Equations with Binary Units

Combining Eqs. (8.8) with (8.14), we obtain the following log-likeli hood
gradients for an RBM with binary units:

<31og/?(v)
BWy

d\ogp{v)
dCi

g log p(y)
cbj

E v [p (h i Iv) ■ vj] - v>) s i g m (w r v(,) + Ci)

£v[p{hi |v)] - j /g /7 j (^ -v (,))

^ [p ^ i *)W ’

(8.15)

b) Sampling In an RBM

Samples of p(x) can be obtained by running a Markov chain to

convergence, using Gibbs sampling as the transition operator.

Gibbs sampling of the joint o f//random variables 5 = (51,.. . , SN) is done

through a sequence of N sampling sub-steps of the form 5, ~ p (S t \ S_j) where

S_j contains the N -1 other random variables in 5 excluding S , .

For RBMs, S consists of the set of visible and hidden units. However, since
they are conditionally independent, one can perform block Gibbs sampling. In
this setting, visible units are sampled simultaneously given fixed values of the
hidden units. Similarly, hidden units are sampled simultaneously given the
visible units. A step in the Markov chain is thus taken as follows:

where hin) refers to the set of all hidden units at the n-th step of the Markov

chain. What it means is that, for example, is randomly chosen to be 1

(versus 0) with probability sigm^W/ - + c ,) , and similarly, v^"+1) is

randomly chosen to be 1 (versus 0) with probability sigm(Wjh^n+X) + b j)

As / —» x , samples are guaranteed to be accurate samples of

h(n+]) ~ s i g m (W vw +c)

v(n+l) ~s ig m (W h(n+1)+b)
(8 . 16)

P (' \ h)

243

In theory, each parameter update in the learning process would require
running one such chain to convergence. It is needless to say that doing so would
be prohibitively expensive. As such, several algorithms have been devised for

RBMs, in order to efficiently sample from p (v , h) during the learning process.

8.3.2. Convolutional neural networks

Deeply supervised neural networks were generally difficult to train before
using unsupervised initial training, there is one exception: convolutional neural
networks. Convolutional networks were inspired by the structure of the visual
system proposed by [Hubel62], The first computational models based on these
local links between neurons and hierarchically organized image transformations
are described in [Fukushima80]. After that, LeCun, continuing this idea,
designed and trained the convolutional networks obtaining very good
performances [LeRoux08] in classical pattern recognition benchmarks Modem
understanding of the physiology o f the visual system is consistent with the
convolutional networks [Serre07], Until now, pattern recognition systems based
on convolutional neural networks are among the best ones.

When it comes to discussing the structure o f the deep networks and its
adaptation, the example of convolutional neural networks is interesting because
they have much more layers than classical neural networks, whose are very hard
to train due to the huge number of nonlinear parameters.

The convolutional neural networks are organized in layers of two types:
convolutional layers and subsampling layers. Each layer has neurons bounded
to a fixed position on the actual part (view field) of the input image. A neuron
at each location of a layer has a set o f input weights associated with the
corresponding neurons in a rectangular patch from the previous layer.

One hypothesis is that if each neuron has small number of inputs, then that
helps the error gradients during the training process spread through more layers
without scattering so much, i.e. not reducing the effect o f training samples too
much. Another hypothesis is that the hierarchical link structure is a very strong
candidate, particularly suitable for visual tasks, and sets the parameters of the

entire network in a favorable region from which the gradient optimizatior

algorithm s are effective.

8.3.3. A uto-Encoders

Further examples o f deep networks use a particular type o f neural network

as a com ponent o f a particular neural network type: auto-encoder [Hinton94]

Since training an automated coder seems easier, they are used as structural

elem ents for deep network searching, where each level is associated with ar

auto-encoder that can be trained separately [Bengio07],

The auto-encoder is trained to encode the input x into a certair
representation of c(x), from which we can reconstruct the input. It means the
output of the auto-encoder is exactly the input. The auto-encoder has the ability
to capture the multimodal aspects of the input distribution. The target is tc
achieve c(x), that can be seen as a distributed representation capturing the mair
factors of data variations.

Experiments reported in [Bengio07] suggest that in practice, when trainee
with a stochastic gradient descent algorithm, non-linear auto-encoders witV
more hidden units than inputs achieve useful representations. A single-layei
auto-encoder with non-linear hidden units requires small value weights in the
first layer and bigger weights in the second layer. The optimization algorithm
will find coding that works well for examples similar to those in the training
set, which we need. This means that the representation describes the statistical
regularities detected from the training set but not tends to describe (discover'
the repeating purpose (the outputs are equal the inputs).

There are different ways to avoid learning the identity transfer functior

with an auto-encoder w ith more hidden units than input, while still keeping

useful features from the input in its hidden representation. One o f these

solutions is to add noise in the encoding. Another solution is based on sparsity

constraints.

The auto-encoders can have very large capacities and still do not learr

identities because they not only try to encode input but also capture statistical

features from the input data. A good example o f the auto-encoders is the so-

245

called denoising auto-encoder [Vincent08], The denoising auto-encoder
minimizes the error during reconstruction of the input signal from the
stochastically damaged transformed inputs.

The text focused on a specific family of algorithms, the Deep Belief
network, and their components, on the Restricted Boltzmann or various types of
auto-encoders that can be interconnected to create a deep architecture It has
been found that this optimization principle is in fact the so-called follow-up
methods in which a number of progressively more difficult optimization
problems have been solved. This suggested new possibilities for deep
architectural optimization either by tracking solutions along the regression path,
or by presenting a sequence of selected examples illustrating gradually more
complex concepts in a manner analogous to the way students learn or animals.

8.4. EXAMPLE OF DEEP LEARNING APPLICATION

In this example (called Training a Deep Neural Network fo r Digit
Classification provided by Matlab [WebMatlab]), we demonstrate the
application of Neural Network Toolbox™ to train a deep neural network to
classify images of digits.

The deep networks contains multiple hidden layers that can be useful for
solving classification problems with complex data, such as images. Each layer
will be responsible for learning (and later generalizing) features at a different

level of abstraction. However, training deep networks is more difficult in
practice than training classical feedforward networks such as MLP. One of the
effective training method for a deep network is the layer-by-layer training. We
can do this by training an autoencoder for each desired hidden layer.

This example shows you how to train a deep network with two hidden
layers to classify digits in images. First we train each the hidden layer using

autoencoders. Then we train a final softmax layer, and join the layers together
to form a deep network, which is next trained using a supervised algorithm.

This example uses 5000 o f 28-by-28 pixels synthetic images for training

the network. The images have been generated by applying random affine

transform ations to digit images created using different fonts.

% Load the training data into memory
[xTrainlmages, tTrain]=digittrain dataset;

s

1

B
process

Each image from the dataset was already labeled with the correct target
value. This is very convenient for supervised learning algorithms. To use the
images for training a neural network, Matlab requires to arrange them into a
matrix where each column represents a single image. We can do this by
stacking the columns o f an image to form a vector, and then forming a matrix

. from these vectors.
% Get the number of pixels in each image
imageWidth=2 8v
imageHeight=2 8;
mputSize=imageWidth*imageHeight;
% Turn the training images into vectors and put them in a

ma t rix
xTram=zeros (inputSize, numel (xTrainlmages)) ;
for i=l:numel(xTrainlmages)

X T r a i n (: , i) “ X T r a i n l m a g e s (i } (:) ;
e n d

6 \ 4 \ < 9

o W 6 \ *

\

< b \ S

0 I s
Figure 83. Samples o f deformed characters used for the training

247

a) Train ing the firs t A u toencoder

We begin with training a sparse autoencoder on the training data without
using the labels.

An autoencoder is a neural network which should have its output equal
exactly its input. To avoid the identical learning, we should use the autoencoder
with less hidden neurons than the number of inputs (or outputs).

When the number o f neurons in the hidden layer is less than the size of the
input, the autoencoder will learn a compressed representation of the input.

You can create an autoencoder by creating a feed-forward network, and
then modifying some o f the settings.

% Set the size of the hidden layer for the autoencoder.

% It is a good idea to make this smaller than the input size.
hiddenSizel=100;

% Create the network.

% Set the number of training epochs and the training
autoencl=feedforwardnet(hiddenSizel);
autoencl.trainFcn='trainscg';
autoencl.trainParam.epochs=400;

% Do not use process functions at the input or output
autoencl.inputs{1}.processFens={};
autoencl.outputs{2}.processFens={};

% Set the transfer function for both layers

% to the logistic sigmoid

autoencl.layers{l}.transferFcn='logsig';
autoencl.layers{2}.transferFcn='logsig';

% Use all of the data for training
autoencl.divideFcn='dividetrain';

as

The autoencoder is trained with the input data and target data are identical.
% Train the autoencoder

autoencl=train(autoencl,xTrain,xTrain);
v i e w (autoencl);

The diagram below of the autoencoder showing the size of the input, output
and hidden layer, as well as the transfer functions for the two layers .

Hidden Output

100 784

Figure 8.4. The structure o f the I s' autoencoder

Visualizing the results from the first Autoencoder

Figure 8.5. Results o f training the 1st autoencoder to compress the input

image

249

After training the autoencoder, we can gain an insight into the features it
has learned by visualizing them. Each neuron in the hidden layer will have a
vector of weights associated with it in the input layer which will be tuned to
respond to a particular visual feature. By reshaping these weight vectors, we
can view a representation of these features as seen on Fig. . . . It can be seen that
the features learned by the autoencoder represent curls and stroke patterns from
the digit images.

The 100 dimensional output from the hidden layer of the autoencoder is a
compressed version of the input, which summarizes its response to the features
that were visualized above. Train the next autoencoder on a set of these vectors
extracted from the training data.

% Create an empty network
autoencHidl=network;

% Set the number of inputs and layers
autoencHidl.numlnputs = l;
autoencHidl.numlayers=l;

% Connect the 1st (and only) layer to the 1st input,

% Connect the 1st layer to the output
autoencHidl.inputConnect(1, 1)=1;
autoencHidl.outputConnect=l;

% Add a connection for a bias term to the first layer
autoencHidl.biasConnect=l;

% Set the size of the input and the 1st layer
autoencHidl.inputs{1}.size=inputSize;
autoencHidl.layers{1}.size=hiddenSizel;

% Use the logistic sigmoid transfer function for the 1st layer
autoencHidl.layers{1}.transferFcn=1logsig1;

i Copy the weights and biases from the 1st layer
% of the trained autoer.codei tc this .network

autoencHidl.IW{1,l}=autoencl.IW{l/1};
autoencHidl.b{1,l}=autoencl.b{l, 1};
view (autoencHidl) ;

100

Figure 8.6. The structure o f the Is' trained layer achieved from the I s'

autoencoder

W e can now generate the features that will be used to train the second
autoencoder. This is done by evaluating the truncated autoencoder on the
training data.

featl=autoencHidl(xTrain) ;

b) Training the second Autoencoder

After training the first autoencoder, you train the second autoencoder in a
similar way. The main difference is that the training data is the features
generated from the hidden layer of the previous autoencoder. Once again, we
create a feed-forward network and then modify the settings.

% Create the network. Set the number hidden neurons,
i Set the number of training epochs and the training function

hiddenSize2=50;
autoenc2 = feedforwardnet(hiddenSize2) ;
autoenc2.trainFcn='trainseg';
autoenc2.trainParam.epochs=100;

% Do not use process functions at the input or output
autoenc2.inputs{1).processFcns={);
autoenc2.outputs(2).processFcns=(J;

251

i Set the transfer function for both layers
% to the logistic sigmoid
autoenc2.layers{1}.transferFcn='logsig';
autoenc2.layers(2).transferFcn='logsig1;

% Use all of the data for training
autoenc2.divideFcn='dividetrain';

After creating the network, we set the performance function and the values
for the performance function parameters.

% Use the mean squared error with L2 weight
% and sparsity regularizers for the performance functior
autoenc2.performFcn='msesparse';

* Select the parameters of performance function
autoenc2.performParam.L2WeightRegularization=0.002;
autoenc2.performParam.sparsityRegularization=4;
autoenc2.performParam.sparsity=0.1 ;

Next, we train this autoencoder on the features generated from the previous
autoencoder.

% Train the second autoencoder
autoenc2=train(autoenc2,featl,featl);
view(autoenc2);

Hidden Output

SO 100

Figure 8. 7. The structure o f the 2nd encoder

The above diagram of second autoencoder is similar to the first, but the
sizes o f the layers are different. Next, we create a version of the second
autoencoder with the final layer removed.

% Create an empty network
autoencHid2“network;

% Set the number of inputs and layers
autoencHid2.numlnputs=l ;
autoencHid2.numlayers=l;

t Connect the 1st (and only) layer to the 1st input,

i Connect the 1st layer to the output

autoencHid2.inputConnect(1,1)=1;
autoencHid2.outputConnect=l ;

i Add a connection for a bias term to the 1st layer
autoencHid2.biasConnect=l ;

% Set the size of the input and the 1st layer
autoencHid2.inputs(1).size=hiddenSizel ;
autoencHid2 .layers 11) .size=hidden5i'ze2';

i Use the logistic sigmoid transfer function for the 1st layer
autoencHid2.layers(1).transferFcn=1logsig1;

i Copy t,h$ weights $nd biases frqm the 1st. layer
% of the 2nd trained autoencoder to this network
aqtpencIUd2.IW{l, 1) =autoenc2 . IW.(1, 1).; .
autoencHid2.b{1,1)=autoenc2.b{1,1);

We can extract a second set of features by passing the previous set through
the second truncated autoencoder.

feat2=autoencHid2(featl);

2 5 3

The original vectors in the training data had 784 dimensions. After passing
them through the first autoencoder, this was reduced to 100 dimensions. After
using the second autoencoder, this was reduced again to 50 dimensions. You
will now train a final layer to classify these 50 dimensional vectors into
different digit classes.

c) Training the fina l S oftm ax Layer

We will create a softmax layer, and train it on the output from the hidden
layer of the second autoencoder.

% Create an empty network
finalSoftmax=network;

% Set the number of inputs and layers
finalSoftmax.numlnputs=l;
finalSoftmax.numLayers=l;

% Connect the 1st (and only) layer to the 1st input,
% Connect the 1st layer to the output
finalSoftmax.inputConnect(1, 1)=1;
finalSoftmax.outputConnect=l;

% Add a connection for a bias term to the first layer
finalSoftmax.biasConnect=l;

% Set the size of the input and the 1st layer
finalSoftmax.inputs{1}.size=hiddenSize2;
finalSoftmax.layers{l}.size=10;

% Use the softmax transfer function for the 1st layer
finalSoftmax.layers{l}.transferFcn='softmax';

% Use all of the data for training

finalSoftmax.divideFcn=' dividetrain';

% Use the cross-entropy performance function
fin ,1 3cf-:ira: . perfo.rir.Fcn* ' cresent ropy ' ;

% Select the number of training epochs
% Select the training function and train the network
finalSoftmax.trainFcn='trainseg ' ;
f inalSoftmax.trainParam.epochs = 400;
f inalSoftmax=train(finalSoftmax,feat2/tTrain);

Layer

10

Figure 8.8. The structure o f the softmax layer

d) Forming a Multilayer Neural Network

You have trained three separate components o f a deep neural network in
isolation.

You join these layers together to form a multilayer neural network. You
create the neural network manually, and then configure the settings, and copy
the weights and biases from the autoencoders and softmax layer.

% Create an empty network
finalNetwork=network;

% Specify one input and three layers
finalNetwork.numlnputs=l;
f irvalNetwor k. numLayers = 3 ;

i Connect the 1st layer to the input
finalNetwork.inputConnect(1, 1) =1;

% Connect the 2nd layer to the 1st layer
finalNetwork.layerConnect(2, 1)=1;

t Connect the 3rd layer to the 2nd layer
finalNetwork.layardonnect(3 , 2)=1;

2 5 5

% Connect the output to the 3rd layer
finalNetwork.outputConnect(1,3)=1;

% Add a connection for a bias term for each layer
finalNetwork.biasConnect=[1; 1; 1];

% Set the size of the input
finalNetwork.inputs{1}.size=inputSize/

% Set the size of the 1st layer to the same as in autoencHidl
finalNetwork.layers{1}.size=hiddenSizel;

i Set the size of the 2nd layer to the same as in autoencHid2
finalNetwork.layers{2}.size=hiddenSize2;

% Set the size of the 3rd layer to the same as in finalSoftmax
finalNetwork.layers{3}.size=10;

% Set the transfer function for the 1st layer to the SSiae
% as in autoencHidl

finalNetwork.layers{1}.transferFcn='logsig' ;

% Set the transfer function for the 2nd layer to the same
% as in autoencHid2

finalNetwork.layers{2}.transferFcn='logsig';

% Set the transfer function for the 3rd layer to the sane
% as in finalSoftmax

finalNetwork.layers{3}.transferFcn='softmax';

% Use all of the data for training
finalNetwork.divideFcn='dividetrain';

% Copy the weights and biases from the three networks
% that have already been trained
finalNetwork.IW{1,1}=autoencHial.IW{1,1};
finalNetwork.b {1}=autoencHidl.b {1,1};

f ina1Network -LW{2,1}=autoencHid2.IW{1,1};
f inalNetwork.b {2}=autoencHid2. b {1, 1};
f inalNetwork.LW{3,2}=f inalSoftmax.IW{1,1};
f inalNetwork.b {3}=finalSoftmax.b {1, 1};

% Use the cross-entropy performance function
f inalNetwork.performFcn='crossentropy';
% Select the number of training epochs and
% the training function
finalNetwork.trainFcn='trainscg';
finalNetwork.trainParam.epochs = 100;

The created multilayer network is shown in Fig. 8.9.

Jt - jjf (jS ,4. ,-S rf ..> ,.-5 .>• i • * c •: P. ;« * • ,Vf * f. /.
Laytr Uyw Uy*r

Figure 8.9. The final structure o f the deep network

W ith the full deep network formed, you can compute the results on the test
set. Before you can do this, you have to reshape the test images into a matrix, as
was done for the training set.

* Load the 'test images

[xTestlmages, tTest]=digittest_dataset;

% Turn the test images into vectors and put them in a matrix
xTest=zeros(inputsize, numel(xTestlmages));
for i=l:numel(xTestlmages)

xTest(:,i)=xTestImages{i) (:) ;
end

W e can visualize the results with a confusion matrix. The numbers in the

bo ttom right hand square o f the matrix will give the overall accuracy.

257

y=finalNetwork(xTest);
plotconfusion(tTest,y);

2

3

4

a
3
O 7

8

9

1 2 3 4 5 6 7 8 9 10
Target Class

Figure 8.10. Confusion matrix for the deep network after the individual
training for each layer

e) Fine tuning the Deep Neural Network

The results for the deep neural network can be improved by performing

backpropagation on the whole multilayer network. This process is often referred

to as fine tuning.

W e fine tune the network by retraining it on the training data in a

supervised fashion The results can be shown again using a confusion matrix.

Confusion Matrix

f inalNetwork=train(finalNetwork,xTrain,tTrain);
y=finalNetwork(xTest);
plotconfusion(tTest,y);

1

2

3

4

«/> c «/) °
iS
o
3 6Q.
3

O 7

8

9

10

Figure 8.11. Confusion matrix for the deep network after the final supervised
training

f) Summary

This example showed how to train a deep neural network to classify digits
in images using the Neural Network Toolbox™. The steps that have been
outlined could be applied to other similar problems such as classifying images
of letters, or even small images of objects of a specific category.

Confusion Matrix
495
9.9%

1
0.0%

0
0.0%

0
0.0% 0.0%

0
0.0%

2
0.0%

0
0.0%

1
0.0%

0
0.0%

93.2 %
0.8%

2 498 0 1 0 0 0 2 0 0 99.0%
0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0%

2 0 498 0 2 0 0 1 0 4
0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 1.8%

0 0 0 496 1 0 0 0 1 0 99.6%
0.0% 0.0% 0.0% 9.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4 %

0 0 0 0 495 0 0 3 0 0
0.0% 0.0% 0.0% 0.0% 9.9% 0.0% 0.0% 0.1% 0.0% 0.0%

0 0 0 0 1 500 0 0 0 0
0.0* 0.0% 0.0% 0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0%

1 1 0 0 0 0 497 1 0 0 99.4 %
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 9.9% 0.0% 0.0% 0.0% 0 6%

0 0 2 3 0 0 0 492 0
o m

0
0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 9.8% 0.0% 0.0%

0 0 0 0 0 0 0 498 0
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 10.0% 0.0%

0 0 0 0 1 0 1 1 0 496 99.4%
0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 9.9% 0.6%

99.6*
9 ̂ ^

99.2% 99.0%
1.0%

100% 99.4% 99.2% 99.3%
1.0% 0.4% 0 .4% 0.0% 0.6% 1.6% 0.4% 0.8% 0.7%

1 2 3 4 5 6 7
Target Class

8 9 10

2 5 9

8.5. CONCLUSIONS

The example of Deep Learning in hand-written character recognition has
concluded the Chapter 8, which is also the last chapter o f this textbook.Through
the content of the book, a short and brief introduction to the selected topics of
Artificial Intelligence was presented. But for new, very dynamic field of
research and application such as AI, this is unquestionably not enough Readers
are encouraged to use the references to broaden the knowledge and to practice
with project for further improvement o f skills.

References
[Abelson96] Abelson H.; Sussman G. J.; Sussman J. (1996). Structure and

interpretation o f computer, 2nd ed., MIT Electrical Engineering and Computer
Science Series.

[Barr81] Barr A., Feigenbaum A. E. (1981). The Handbook o f Artificial Intelligence,
HeurisTech Press, vol. 1.

[Back91] Back T., Hoffmeister F., Schwefel H. P. (1991). A Survey o f Evolution
Strategies, Proceedings of the 4th International Conference on Genetic
Algorithms (ICGA), pp. 2-9.

[Bellman78] Bellman R. (1978). An Introduction to Artificial Intelligence: Can
Computers Think?, Boyd & Fraser, USA.

[Bengio07] Bengio Y.; Lamblin P.; Popovici D.; Larochelle H. (2007). Greedy layer-
wise training o f deep networks, Advances in Neural Information Processing
Systems 19 (NIPS’06), pp. 153 - 160, MIT Press.

[Bezdek81] Bezdek J. C. (1981). Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York.

[Booker87] Booker L. B. (1987). Improving Search in Genetic Algorithms, Genetic
Algorithms and Simulated Annealing: An Overview, Morgan Kaufmann
Publishers, San Mateo, CA, pp. 61-73.

[Brindle80] Brindle Anne (1980). Genetic Algorithms for Function Optimization,
PhD Thesis, Department of Computing Science, University of Alberta,
Canada.

[CarilloOl]' Carrillo-Ureta G. E., Robrts P. D., Becerra V. M. (2001). Genetic
algorithm for optimal control o f beer fermentation, Proc. of IEEE IS on
Intelligent Control, Mexico City, 391-396.

[Chamiak85] Chamiak E., McDermott D. (1985). Introduction to Artificial

Intelligence, Addison-Wesley, USA.

[Church41] Church A. (1941), The calculi o f lambda conversion, Princeton
University Press, 1941.

[Dunn73] Dunn J. C. (1973). A Fuzzy Relative o f the ISODATA Process and Its Use

in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol. 3,
p. 32-57.

261

[Erhan09] Erhan D.; Manzagol P.-A.; Bengio Y.; Bengio S.; Vinccnt P. (2009). The
difficulty o f training deep architectures and the effect o f unsupervised
pretraining, Proceedings of the 12th IC on Artificial Intelligence and Statistics
(AISTATS’09), pp. 153-160.

[Fogel66] Fogel L.; Owens A.; Walsh M. (1966). Artificial intelligence Through
simulated evolution, Chichester.

[Foyya96] Foyyad U. M.; G. Piatetzky-Shapiro; P. Smyth, R. Uthurusamv; (1996).
Advances in Knowledge Discovery and Data Mining, Cambridge, MAAIII
Press/MIT Press.

[Fukushima80] K. Fukushima, (1980). Neocognitron: A self-organizing neural
network model for a mechanism o f pattern recognition unaffected by shift in
position, Biological Cybernetics, vol. 36, pp. 193-202.

[Gen99] Gen, M.; Li, Y.; Ida, K. (1999). Solving Multi-Objective Transportation
Problem by Spanning Tree-Based Genetic Algorithm, IEICE Transactions on
Fundamental, vol. E82-A, no. 12, pp. 2802 - 2810.

[Goldberg89] Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Publishing Company Inc.

[Haykin99] Haykin S. S. (1999). Neural Networks: A Comprehensive Foundation,
Prentice Hall.

[Hebb49] Hebb D. O. (1949). The organization o f behavior. Wiley & Sons, NY.

[Hinton94] G. E. Hinton, R. S. Zemel (1994), Autoencoders, minimum description
length, and Helmholtz free energy, Advances in Neural Information Processing
Systems 6 (NIPS’93), pp. 3-10, Morgan Kaufmann Publishers, Inc.

[Hinton06] G. E. Hinton, S. Osindero, Y. Teh, (2006). A fast learning algorithm for
deep belief nets, Neural Computation, vol. 18, pp. 1527-1554.

[Holland75] Holland J.H. (1975), Adaptation in natural and artificial systems,
Michigan.

[Hubel62] Hubei D. H.; Wiesel T. N. (1962). Receptive fields, binocular interaction,
and functional architecture in the ca t’s visual cortex, Journal of Physiology
(London), vol. 160, pp 106-154.

[Kinnear94] K. E. Kmncar. (1994). Advances in Generic Programming. MIT Press,
Cambridge.

[Kohonen89] Kohonen Tcuvo (1989). Self-Organization and Associative Memory,
Springer Series in Information Sciences.

[Kolmogorov] Kolmogorov A. N., (1957). On the representation o f continuous
functions o f several variables by superposition o f continuous functions o f one
variable and addition, Dokl. Akad. Nauk SSSR, vol. 114, p. 953 - 956.

[Kosko88] Kosko Bart (1988). Bidirectional Associative Memories, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 18, No. 1, pp. 49 - 60.

[Koza92] Koza J. R. (1992). Genetic Programming, MIT Press.

[Larochelle09] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin (2009). Exploring
strategies for training deep neural networks, Journal of Machine Learning
Research, vol. 10, pp. 1-40.

[LeRoux08] Le Roux N., Bengio Y., (2008). Representational power o f Restricted
Boltzman Machines and Deep Belief Networks, Neural Computation, vol. 20,
no. 6, pp. 1631-1649.

[Luger04] Luger, G.; Stubblefield W. (2004). Artificial Intelligence: Structures and
Strategies for Complex Problem Solving, 5th edition, Benjamin/Cummings.

[McCarthy59] McCarthy J. (1959). Recursive Functions o f Symbolic Expressions and
Their Computation by Machine, Artificial Intelligence Project - RLE and MIT
Computation Center, Memo 8.

[Maschek05] Maschek, M.K. (2005). Applications o f Evolutionary Learning in
Macroeconomic Models, PhD Thesis, Department of Economics, Simon Fraser
University, BC, Canada.

[Micbalewicz92] Z. Michalewicz, (1992). Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin Heidelberg.

[Michale\vicz96] Michalewicz Z.; SchoenauerM. (1996). Evolutionary computation
for constrained parameter optimization problems, Evolutionary Computation,
Vol. 4, No. 1, pp. 1-32.

[Millington09] Millington Ian; Funge John (2009). Artificial Intelligence for Games,
2nd ed.. CRC Press.

[Minsky91] Minsky Marvin (1961). Steps Toward Artificial Intelligence, Proceedings
of the IRE. vol. 49. pp 8-30.

2 6 3

[0dugu\va05] Oduguwa V.; Ti wan A.; Roy R. (2005). Evolutionary computing in
manufacturing industry: an overview o f recent applications. Applied Soft
Computing 5, 281-299.

[PenaOO] C. A. Peña-Reyes, M. Sipper, (2000). Evolutionary computation in
medicine: an overview, Artificial Intelligence Med. 19, pp. 1-23.

[Potvin96], Potvin Jean-Yves (1996). Genetic algorithms for the traveling salesman
problem, Annals of Operations Research 63, pp. 339-370.

[Pressman89] Pressman, Ian; David Singmaster (1989). The Jealous Husbands and
The Missionaries and Cannibals, The Mathematical Gazette The
Mathematical Association. 73 (464): 73-81.

[Radcliffe95] N. J. Radcliffe, P. D. Surry, (1995). Fundamental Limitations on
Search Algorithms: Evolutionary Computing in Perspective, Lecture Notes in
Computer Science, Vol. 1000, J. Van Leeuwen (ed.), Springer-Verlag.

[Ranzato07] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun, (2007). Efficient
learning o f sparse representations with an energy-based model, Advances in
Neural Information Processing Systems 19, pp. 1137-1144, MIT Press.

[Rich09] Rich E.; Knight K. (2009). Artificial Intelligence. 2nd ed., McGraw-Hill,
USA.

[Schaefer02] Schaefer Steve (2002). "MathRec Solutions (Tic-Tac-Toe)",
http://www.inathrec.org/old/2002ian/solutions.htinl. retrieved 2015-09-18.

[SchalkofRO] Schalkoff J. R. (1990). Artificial Intelligence: An Engineering
Approach, McGraw-Hill, USA.

[Schwefel95] Schwefel H.P., (1995). Evolution and optimum seeking, Chichester.

[Serre07] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, T. Poggio, (2007).
A quantitative theory o f immediate visual recognition, Progress in Brain
Research, Computational Neuroscience: Theoretical Insights into Brain
Function, vol. 165, pp. 33-56.

[Stent73] Stent, G. (1973). A physiological mechanism fo r Hebb's postulate of

learning. Proceedings of the National Academy of Sciences, USA

[Vincent08] P. Vincent, H. Larochelle, Y. Bengio, P.A. Manzagol, (2008). Extracting
and composing robust features with dem ising auloencoders. Proceedings of
the 25lh IC on Machine Learning (ICML'08), pp 1096-1103. ACM

|WebEco] https:/Av\v\v.codeproicct.coin/Anicles/l 182210/Artificial-lntclliecnce

2'j-l

http://www.inathrec.org/old/2002ian/solutions.htinl

[WebFong] http:/A\ww.cs.sfu.ca/CourscCcntral/310/p\vfong/Lisp/3/tutorial3.html

[WebGao] http://logos.cs.uic.edu/476/rcsouiccs/Prolog/foxGooscGrain.txt

CWebLisp] "The Jargon File - Lisp",
http://www.catb.0rg/~esr/iarg0n/html/L/LISP.html

[WebLispOl] (20011 http://wvvw.paulgraham.com/diff.html

[WebMatlab] https:/Avww.mathworks.com/help/nnet/examples/training-a-deep-
neural-network-for-digit-classification.html

[WebMisuku] http://www.aisb.org.Uk/events/loebner-prize#Results2016

[WebMutation] Genetics Home Reference: Mutations and Health,
https://ghr.nlm.nih.gov/primer/mutationsanddisorders/genemutation

[WebProlog] http://www.swi-Drolog.org/

[WebTanimoto03] http://courses.cs.washington.edu/courses/cse341/03sp/

[WebUnix02] (2002) http://xahlee.info/UnixResource dir/writ/iargons.html

[WikiAI] httDs://en.wikipedia.org/wiki/Artificial intelligence

[WikiNeuron] https://en.wikipedia.org/wiki/Neuron

[WikiRiver] https://en.wikipedia.org/wiki/Fox. goose and bag of beans puzzle

[WikiTic] https://en.wikipedia.org/wiki/Tic-tac-toe

fWhitley97] D. Whitley, S. Rana, R. Heckendom, (1997). Representation Issues in
Neighborhood Search and Evolutionary Algorithms, Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, D. Quagliarella, J.
Periaux, C. Poloni, G. Winter (eds.), pp. 39-57, John Wiley.

[Winston92] Winston H. P. (\992)..Artificial Intelligence, Addison-Wesley, USA.

[W olfl2] Wolf, Mark J. P. (2012). Encyclopedia o f Video Games: The Culture,
Technology, and Art o f Gaming. Greenwood Publishing Group, pp. 3-7.

| Wolsey98| L. A. Wolsey, (1998). Integer Programming, John Wiley & Sons Inc.

[Yu97] Y. Yu, M. C. Schell, J B. Hang, (1997). Decision theoretic steering and
genetic algorithm optimization: application to stereotactic radiosurgery
treatment planning, Med. Phys 24. 1742-1 750.

2 6 5

http://logos.cs.uic.edu/476/rcsouiccs/Prolog/foxGooscGrain.txt
http://www.catb.0rg/~esr/iarg0n/html/L/LISP.html
http://wvvw.paulgraham.com/diff.html
http://www.aisb.org.Uk/events/loebner-prize%23Results2016
https://ghr.nlm.nih.gov/primer/mutationsanddisorders/genemutation
http://www.swi-Drolog.org/
http://courses.cs.washington.edu/courses/cse341/03sp/
http://xahlee.info/UnixResource
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Fox
https://en.wikipedia.org/wiki/Tic-tac-toe

CONTENTS

F o re w o rd s ...

Chapter 1: Introduction to Artificial Intelligence......................................

1.1. W hat Is Intelligence And A I? .. ^

1.2. Problem Solving and Games Using A I ... 4

1.3. Results-Oriented Applications Of A I.. ■ ^

Chapter 2: SEARCH ALGORITHMS...9

2.1. Types Of Search Algorithms.. 9

2.2. Data Structures For States Representation... ®

2.3. Traversal And Searching In A Sorted Array....................................... 9

2.4. “ Traversal” In A Binary Tree... ,•••*

2.5. Searching in Binary Sorted Tree..

2.6. Graph Traversal.................. ...

2.7. Selected Informed Search Algorithms... •

2.8. Chapter Summary... - ^

Chapter 3: PROLOG - A Logical Programming Language.................

3.1. PROLOG Language... •

3 .2. Objects and Relationships......................................

3.3. T erm s...■ ■

3.4. Clauses, programs and queries..■ ■

3 .5 Q uery E valuation ... ^

3 .6. L is ts ...

3 7 O ther selected operators...•

3 8 Selected Examples o f PROLOG Program s... ^

Chapter 4: L ISP -A Functional Programming Languages...................,...95

4.1. Language characteristics..96

4.2. Effect on programming.. 97

4.3. Syntax basics For S-expressions...99

4.4. Functions...103

4.5. Function as a variable.. 108

4.6. Anonymous Functions..109

4.7. V ariables...110

4.8. M acros... 116

4.9. Lists Data Structures... 123

4.10. Examples of LISP program.. 125

Chapter 5: AI AND GAMES... 133

5.1. Introduction...133

5.2. Game A I..135

5.3. A Proposed Model of AI Mechanisms for Game................................... 140

5.4. Behavioral Robotic Architecture... 148

5.5. Selected Examples of Simple Games... 150

5.6. Conclusions.. 156

Chapter 6: ARTIFICIAL NEURAL NETWORKS.................................... 158

6.1 Introduction...158

6.2. The Artificial Neuron M odel... 161

6.3. Training the perceptron...164

6.4. Multilayer PERCEPTRONS (M LP)...168

6.5. Recurrent Neural networks..171

6.6. Unsupervised Learning and Self-organising Neural Networks..........182

6.7. Learning Algorithm For Kohonen N etw ork.. 187

i :

C h a p te r 7: Evolutionary algorithm s..194

7.1. Introduction to evolutionary algorithms... 194

7.2. The detailed structure o f evolutionary algorithm s.................................... 197

7.3. Applications of genetic algorithm s...212

7.4 E xam ples... 214

7.5. Conclusion.. 223

C h a p te r 8: DEEP LEARNING... 224

8.1. Introduction..224

8.2. The best frameworks for machine learning and deep learning.............232

8.3. Selected Networks For Deep Learning.. 238

8.4. Example of Deep Learning Application...246

8.5. Conclusions..260

6.8. S u m m ary .. 193

in

LIST OF FIGURES

Figure 2.1. A presentation of space states with the operation to move
between the states.. 20

Figure 2.2. Hanoi Tower example with 3 disks at the beginning.......................20

Figure 2.3. Possible moves from the starting position (1, 1, 1).......................... 21

Figure 2.4. A solution to move all disks from Tower 1 to Tower 3 22

Figure 2.5. Example of a solution for the 4 Queens problem (a) and 8
Queens problem (b) ...22

Figure 2.6. A start state of the 8 Puzzle game (a) and its possible (2) moves
from the neighbor cells (b)..23

Figure 2.7. The target state of the 8 Puzzle G am e..23

Figure 2.8. Example of a weighted graph with the costs for the edges............24

Figure 2.9. An example of a node and a linked l is t ..28

Figure 2.10. Example of a FIFO with chain o f operations: a) empty, b)
Add(l), c) Add(2), d) Add(3), e) Delete(), f) Delete(), g) A dd(4).................. 29

Figure 2.11. Example of a LIFO stack with chain of operations: a) empty,
b) Push(l), c) Push(2), d) Push(3), e) Pop(), f) Pop(), g) Push(4)................... 30

Figure 2.12. Example of undirected (a) and directed (b) graphs......................34

Figure 2.13. An example of a tree data structure.. 36

Figure 2.14. A non-tree data structure.. 36

Figure 2.15. An example of a binary tree .. 37

Figure 2.16. A full 4-level binary tree .. 37

Figure 2.17. A standard declaration of binary tree data structure.....................38

Figure 2.18. Two binary search trees storing the same set of keys..................39

Figure 2.19. A binary tree along with its inorder, preorder and postorder......42

Figure 1.1. The eco-system of Artificial Intelligence [W ebEco]....................... 15

Figure 2.21. Breadth-first traversal of graph G starting at vertex 0: 0-1-2-3-
4-5-6-7-S...48

Figure 2.22. Search order for a graph (from Fig. 2.20) using depth-limited
search: depth=l: 0-1-4; depth=2: 0-1-2-3-4; depth=3: 0-1-2-6-3-5-4................50

Figure 2.23. An example graph where choosing the lowest cost path for the
first node (A->C) is not the best solution (A->B->F)... 52

Figure 2.24. Illustrating the path cost through the graph......................................55

Figure 2.25. A goal state of N-Queens board (where N=4)................................57

Figure 2.26. Possible moves for a state of the board for N = 4........................... 57

Figure 2.27. Graphical (condensed) view of the search tre e 58

Figure 2.28. Eight Puzzle tree ending at depth two, illustrating the cost
functions.. 62

Figure 3.1. Insertion Sort demo for an input array of 8 elements {6, 1, 5, 7,
3 ,2 , 4 ,8 } .. 89

Figure 3.2, Examples of sorted binary trees............................ 90

Figure 3.3. An example of binary tree ... 94

Figure 4.1. An example of Sorted Binary Tree structure.................................127

Figure 5.1. The AI model [Millington09]... 149

Figure 5.2. An proposed schematic for AI game system [Millington09]... . 150

Figure 5 3 . An example of a Game of Tic-tac-toe, won by X ,...... . 152

Figure 6.1. The structure of a biological neuron [WikiNeuron]......................159

Figure 6.2. Architecture of a typical artificial neural network........................ 161

Figure 6.3 Diagram of a neuron.. 161

Figure 6.4 Thresholded step activation function of the McCulloch - Pitts
neuron (0 -0 .5) ..162

Figure 6.5. Examples of activation functions of a neuron: a) sign function,
b) sigmoid function, c) tansig function... 163

Figure 2.20. Graph G and its depth first traversals starting at vertex 0 46

Figure 6.6 Multilayer perceptron with one (a) and two hidden layers (b)......169

Figure 6.7. Single-layer N-neuron Hopfield network...172

Figure 6.8. The saturated linear activation function... 173

Figure 6.9. BAM network operations: (a) forward direction; (b) backward
direction... 175

Figure 6.10. Example of a 2D distribution of samples (a) and their division
into 3 groups with centers at (*) ...185

Figure 6.11. Classical structure of the Kohonen network.................................. 186

Figure 6.12. Example of topology of the centers’ grid in Kohonen: a)
rectangular, b) triangular, c) hexagonal.. 187

Figure 6.13. Example o f 4 input vectors Xi, x2, x3, x4 and 2 centers ci, cj.
With xi the center ci wins and is shifted toward xi when C2 is unchanged...... 188

Figure 6.14. The effect of moving a node from an original squared grid........ 188

Figure 6.15. Example of a grid of 8x5 centers in Kohonen network spread
among the data samples: a) Regular initiation at start, b) after 10 iterations,
c) after 100 iterations, d) after 500 iterations... . 189

Figure 6.16. The result of FCM algorithm for the data from the Fig. 6.14: a)
Initial positions, b) after 5 iterations, c) after 10 iterations, d) after 50
iterations... 192

Figure 7.1. General scheme of a Genetic A lgorithm .. 201

Figure 7.2. An example of a single-point m utation.. 208

Figure 7.3. Single-point crossing between 2 chromosomes..............................209

Figure 7.4. Double-point crossing between 2 chromosomes.............................210

Figure 7.5. The schema and 4 possible combinations of chromosomes....... 211

Figure 7.6. The shape of the nonlinear function in the selected dom ain......215

Figure 7.7. The change of maximum value found along the generations..... 217

Figure 7.8. The optimum point found by the genetic algorithm........................217

Figure 7 9 Example of a graph (undirected) and its weights............................218

Figure 7.11. The mutation operator to create the 1st child for the two paths
1-2-3-4-5-6-7-8 and 1-4-5-7-3-2-8-6...220

Figure 7.12. The mutation operator to create the 2nd child for the two paths
1-2-3-4-5-6-7-8 and 1-4-5-7-3-2-8-6... 221

Figure 7.13. The locations of 20 cities for the TSP (randomly generated)......221

Figure 7.14. Intermediate results along the generations of evolution: a) after
15, b) after 35, c) after 59, d) after 170 iterations..222

Figure 8.1. A picture containing “a car under sunlight”225

Figure 8.2. A simplified structure of RBM...241

Figure 8.3. Samples of deformed characters used for the training process.... 247

Figure 8.4. The structure of the Is' autoencoder..249

Figure 8.5. Results of training the 1st autoencoder to compress the input
im age..249

Figure 8.6. The structure of the 1st trained layer achieved from the 1st
autoencoder... 251

Figure 8.7. The structure of the 2nd encoder.. 252

Figure 8 .8. The structure of the softmax layer... 255

Figure 8 .9. The final structure of the deep network.. 257

Figure 8.10. Confusion matrix for the deep network after the individual
training for each layer... 258

Figure 8.11. Confusion matrix for the deep network after the final
supervised training...259

Figure 7.10. The crossing operator for traveling paths....................................... 219

VI1

NHÀ XUÁT BẢN ĐẠI HOC THÁI NGUYÊN
Địa chỉ: Phuửng Tân Thịnh - Thành phố Thái Nguyên - Tỉnh Thái Ngiyên

Điện thoại: 0208 3840023; Fax: 0208 3840017
_____ Website: nxb.tnu.edu.vn * E-mail: nxjljdhtn(Sigmayxom_________

ARTIFICIAL INTELLIGENCE

Chịu trách nhiệm xuất bản:
PGS.TS. NGUYẺN ĐỨC HẠNH

Giám đốc - Tổng biên tập

Biên tập: TRỊNH THANH ĐIỆP
Thiết kế bìa: LÊ THÀNH NGUYÊN
Chế bàn: QUÁCH THỊ MAI
Sửa bàn in: ĐÀO THÁI SƠN

ISBN: 978-604-915-572-7__
In 500 cuốn, khó 17 X 24cm, tại Xưởng in - Nhà xuất bản Đại học Thái Nguyêi (Đtịaa
chì: Phường Tân Thịnh - Thành phố Thái Nguyên - Tỉnh Thái Nguyên). Giấ' phcép.1
xuất bản số: 3557-2017/CXBIPH/01-165/ĐHTN. Quyết định xuất ban số: 277/QE)—
NXBĐHTN. In xong và nộp lưu chiểu quý IV năm 2017.

