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PREFACE

Signal analysis is a subject that arises in many different disciplines such as 
science, engineering, and economics. Scientists and engineers all use the 
concept of signals and systems because the concept forms a foundation on 
which we build many things of our daily lives. Typical examples of systems 
include radio and television, telephone networks, radar systems, computer 
networks, wireless communication, military surveillance systems, and 
satellite communication systems. And we interact with those systems via 
signals.

A signal typically delivers information about the nature of a physical 
phenomenon. Examples of signals include atmospheric temperature, hu­
midity, human voice, and television images. Necessary information within 
a signal, however, does not come to our hand for free. It requires an art 
of signal analysis. Moreover, most engineering students will deal with 
signals and systems in their professional lives in future. That is why a 
course on signal analysis is an important part of engineering curricula, and 
we cannot overemphasize the importance of understanding signal analysis.

Unfortunately, however, engineering curricula are so crowded, and 
many students cannot take enough credit for signal analysis. It is, in fact, 
not hard to see students studying signal analysis only for one semester and 
finishing the study in the middle of ongoing discussion about the signal 
analysis. This discrepancy between the importance of signal analysis and 
the curricular reality necessitates us to write this book.

This book is, in principle, written for sophomore or junior level stu­
dents, who encounter the topic of signal analysis for the first time. And 
this book i$ organized in such a way that students may experience the 
essence of signal analysis within a semester. We da not aim to cover every 
detail about signal analysis. We do not try to write a book that deserves 
someone's lifelong reference. There are already a l<ot of classic books that 
deserve the honor. Instead of that, we hope this book to be an agent that 
helps students successfully plunge into the world of signal analysis.

Finally, we emphasize that mathematics is so> much about studying

ix



PREFACE

signal analysis. The mathematical prerequisite for this book is standard 
mathematics that includes calculus and differential equations. Readers are, 
however, supposed to parallel studying complex numbers along with the 
study of signal analysis. Up to Chapter 6, we intentionally avoid expressing 
things in terms of complex numbers. By the start of Chapter 7, however, 
students should already have a good understanding about the theory of 
complex numbers.
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BASIC CONCEPTS

Chapter ì

While discussing signal analysis, we often encounter the multi-dimensional 
nature of the subject. The first dimension is based on which element of a 
problem we focus on: signal or system. Another dimension is dependent 
on what form of data we deal with: continuous or discrete. Furthermore, 
we frequently move between two different domains: time or frequency. 
In other words, our discussion may start with continuous-time signals 
in frequency domain and then migrate to discrete-time systems in time 
domain. And, without clear understanding about what we are handling at 
a moment, we quickly get lost in the middle of discussing signal analysis. 
Therefore, we first clarify terminologies shown in Figure 1.1 and then 
introduce several basic signals.

✓

O)
H

Forms

Continuous / Discrete

Figure 1.1:2 elements, 2 forms, and 2 domains
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Chapter I . BASIC CONCEPTS

1.1 SIGNAL AND SYSTEM

x(t)
Excitation

(Input signal)
System Response

(Output signal)

Figure 1.2: Signal and system

A signal is a set of data or function that represents a phenomenon 
of interest. Almost every measurable quantity can be the signal of our 
concern. It can be an acoustic recording with time (A(/)) or wind intensity 
measurement along a road (VV(jc)). There can be 2-dimensional (e.g. a pic­
ture image P(x, 3O) or higher dimensional signal (e.g. a movie M(x, _v, t ) )■ 
In this study, we predominantly focus on 1 -dimensional signals that vary 
with time.

A system is a collection of devices that operates on an input signal x ( t) 
and produces an output signal y(f). For example, we may regard voltages 
or currents in an electric circuit as signals, while regarding the circuit 
itself as a system. Note that as long as we discuss 1-dimensional time 
signals, the two symbols x  and y always denote input and output signals, 
respectively.

1.2 CONTINUOUS-TIME AND DISCRETE-TIME

*(0 *[«]

T
-2 - 1 0  I

Figure 1.3: Continuous-time function x(t)  and discrete-time sequence 
x[n)

A continuous-time signal x(t)  is defined at every instant of time, while 
a discrete-time signal x[n] is only defined at specific moments that are 
identified by the integer variable n. Throughout this study, continuous­
time signals are also referred to as time functions, and discrete-time signals 
as time sequences.

2



One interacts with a continuous-time system via continuous-time sig­
nals and with a discrete-time system via discrete-time signals. Since time 
is naturally a continuous physical quantity, most physical systems are 
continuous-time systems. Discrete-time signals are usually obtained from 
continuous-time signals through sampling. There are, however, systems 
that are intrinsically discrete-time. Without a new deposit or withdrawal, 
the daily balance of a savings account remains the same for a day, and, 
thus, the savings account is a good example of discrete-time systems.

1.3 TIME DOMAIN AND FREQUENCY DOMAIN

8 4
4 3

(a) o 2

-8
1
0 1

0 0.2 0.4 0.6 0.8 I 0 1 2  3 4 5 6

8

4
(b)°

-4
-8

\  r \  r \  /

4
3

\ J  X J  x s 2
1
00 0.2 0.4 0.6 0.8 I 0 1 2 3 4 5 6

8|------------------------------  4

(C) 0 \ / \ / \ / \ / \ /  2
-4 1
-8 ----------------------------------- 00 0.2 0.4 0.6 0.8 1 0 1 2  3 4 5 6

Figure 1.4: Time domain (left column) and frequency domain (right col­
umn) representations
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Chapter 1. BASIC CONCEPTS

Characteristics of a data set may be described in time or frequency 
domains. In the time domain, data characteristics are displayed along 
the time axis, and, in the frequency domain, on the other hand, along the 
frequency axis. Consider graphs on the left column of Figure 1.4, where 
continuous-time signals are displayed for 1 second. One can quickly 
read frequencies and amplitudes from the signals: frequency is 1 Hz and 
amplitude is 1 in row (a), frequency is 3 Hz and amplitude is 3 in row (b), 
and frequency is 5 Hz and amplitude is 2 in row (c). Graphs on the right 
column depict exactly the same information: frequencies by horizontal 
locations and amplitudes by vertical heights. One may find it is redundant 
to represent data in the frequency domain. However, in row (d), where 
signals of the upper three rows are summed up, it is evident that frequency 
information is strongly obscured in the time domain graphs, while well 
preserved in the frequency domain graphs.

Amplitude is, in fact, not the only information we present in the fre­
quency domain. We will later study that phase is another crucial informa­
tion we have to investigate in the frequency domain. Note that amplitude 
spectrum and phase spectrum mean that amplitude and phase information 
are being displayed along the frequency axis, respectively.

Fast Fourier Transform (FFT)

-0.4

-0.8

/(Hz)

Inverse Fast Fourier Transform (IFFT)

Figure 1.5: Fast Fourier transform and inverse fast Fourier transform



Figure 1.4 well validates the Frequency domain analysis. We have 
not yet, however, discussed how to move between time and frequency 
domain. Consider, for example, the time signal shown in Figure 1.5. It is 
unreasonable to identify frequency characteristics of the time signal via 
any analytic means, and we need to rely on digital computer algorithms. 
The most popular algorithm for retrieving frequency information out of a 
time signal is called the fast Fourier transform (FFT). The topic about the 
FFT is covered later in Chapter 12.

Example 1.1 Sketch the amplitude spectrum of the time function 
shown below.

0 0.2 0.4 0.6 0.8 t

t( S)

Solution

The signal fluctuates twice a second, and the range of fluctua­
tion is between 6 and -2. The signed thus has a 2 Hz frequency 
component and a DC (0 Hz) component as well. And we identify the 
analytic expression of the function as

jc(r) = 2 + 4cos(4;r/),

and sketch the amplitude spectrum as follows:

5



Chapter 1. BASIC CONCEPTS

Example 1.2 Consider the time signal shown below. The signal has 
two frequency components:

x(t) = A¡ cos(2tt/ií) + A2cos(2nf2t).

Sketch the amplitude spectrum of the time signal.

0 0.2 0.4 0.6 0.8 I

t (s)

6



Solution

The signal exhibits low frequency fluctuation with 2 Hz fre­
quency. The signal also shows high frequency variation with 9 Hz 
frequency. We thus write the expression of the signal as

x(t) = A i cos(4;rf) + y4?cos( 18;rf).

We also read the signal and write the following relations:

.r(0.0) = + At = 6,
jc(0.5) = A\ -  Ai = 2.

Solving the above expressions, we identify that A\ = 4 and A2 = 2, 
and we sketch the amplitude spectrum as follows:

io — --------------------------------------
9

8

7

6

5

4

3

2

I .....................
0 ------------------------------------- ----

0 1 2 3 4 5 6 7 8 9  10

/(Hz)

1.4 BASIC CONTINUOUS-TIME SIGNALS

We present several basic continuous-time signals. These include the unit 
ramp function r(t), unit step function n(f), and unit impulse function S(t). 
These three functions are also called singularity functions, because they 
are discontinuous or have discontinuous derivatives.

7



Chapter 1. BASIC CONCEPTS

1.4.1 Unit Ramp Function

The unit ramp function r(t)  is defined as

11 ( />  0), 
0 (/ < 0).

r(r) =

Using the definition, we also write the following relations: 

r(t + 10) =

r ( t - t o )  =  

r ( - t - t o )  =  

r ( - f  + fo) =

Ị/  + Í0 (t  + to >  0)

[o (t  + to <  0),

f t - t o  (t  -  to >  0)

|o  ( t - t o <  0),

[- Í- / 0  ( -/ -  /0 > 0)
( o  ( - /  - t o <  0 ),

f - t  +  to ( ~ t  +  to >  0)

0 ( - Í + /o < 0),

and draw different ramp functions as shown in Figure 1.6.

lit + to) r ( t - t 0)

( 1. 1)

Figure 1.6: Unit Ramp functions

Example 1.3 Sketch time signal x(t)  that is given as 

x(t) = r(t + l ) r ( - t + l ) .

8



Solution

We first sketch r(t + 1) and r ( - t  + ! ) as follows:

r(/ + l) /•(-/ + !)

It is obvious that for t < -1 , r(t  + 1) is zero, and x(t)  is thus zero. 
Likewise, for t > 1, r ( - t  + 1) is zero, and Jt(r) is zero too. For 
-1 < t < 1, on the other hand, jc(/) = (t + l ) ( - f  + 1) = - t 2 + 1. We 
therefore sketch x(t)  as follows:

x(t)

1.4.2 Unit Step Function

The unit step function u(t), also known as Heaviside function, is defined
as

« (0  =
|1 ( /> 0 ) ,  
10 (t < 0).

( 1.2)

Note that u(t) is discontinuous and undefined at t = 0. Utilizing the above 
definition, we can write the following relations:

1 ( t + to > 0)
0 (t + t0 < 0),

1 ( f - / o > 0 )
0 ( t - t o <  0),

9



Chapter 1. BASIC CONCEPTS

( l ( - r  - r0 > 0)
(0 ( - 1 - t 0 < 0),

f l  ( - t  + to  > 0 )

(0 (~r + t0 < 0),

and draw a series of step functions as shown in Figure 1.7. Step functions 
are frequently used to represent an abrupt change, like the changes that 
occur in circuits of control systems and digital computers.

u(t + t0)

-in

u(t)

u(-t)
A

u(-t  + t0)

Figure 1.7: Unit step functions

Example 1.4 Sketch the time signal x(t)  that is given as 

x(t) = u(t  + 1) u( - t )  + u(t) r ( - t  + 1).

Solution

«(/ + 1) 
t i __________

u(-t) -------Tf --------------* '
A 

— I

----------------- >t

10



u(t)

N

X
r(- t  + 1)

-1 

+
u(t)r(-t  + l)

u U )r(- t  + 1)

*(/)
A

r k  -----------* > t-i i

1.4.3 Unit Impulse Function

The unit impulse function i5(f), also known as the della function, is defiried 
as

<5(/) = i° °  (i = 0)’ (1.3)\o (/#0).
As the definition illustrates, the unit impulse function is strongly non- 
intuitive. To grasp the physical significance of the function more con­
veniently, consider rectangular functions shown in Figure 1.8 (a-).' Four 
different functions are shown, but the area above the time axis remains 
the same. We can now imagine a function that has infinite height, zero 
width, and an area that is identical to the area of the rectangular functions 
shown in Figure 1.8 (a). That is the unit impulse function. It is, however,

11



Chapter 1. BASIC CONCEPTS

-2 Sit)

f t  ị iị I

T  f -ị i

Ii
I!
H
I •ị i

H i “ I

(a)
I

ổụ)

(b)
- 2 '

(c)

/

Figure 1.8: Concept of the unit impulse function

impossible to display the infinite height. We thus sketch the unit impulse 
function via the arrow symbol with the height of the arrow representing 
the area or integration value of impulse functions (Figures 1.8 (b) and (c)). 
Utilizing expression 1.3, we write the following relations:

ổ(í + /0) 

ỏ(t -  to) 

ỗ ( - r - t o )  

ổ ( - t  + to)

oo (t + to =  0)
0 (r + fo * 0 ),

CO ( t - t o  = 0)
0 1 o n- o

oo (~t -  to = 0)
0 ( - Í  - t o *  0),

00 { - t  +  t0 = 0)
0 ( - /  + /0 ^ 0 ) .

With the above expressions, different impulse functions can readily be 
sketched as shown in Figure 1.9.

The unit impulse function 6(t) has several important properties. First

12



Figure 1.9: Unit impulse functions

of all, the integral of unit impulse function has the following properties: 

6(t)dt  = 1 , (1.4)

f  S(t -  t0) dt = 
Ja

1 (a < t0 < b),
0 (to < a < b), (1.5)
0 (a < b < to).

The impulse function can be also associated with other functions. Consider 
the following integral:

f  x ( t ) S ( t  - t 0) d t ,
Ja

where a < to < b. Since 6(t  -  f0) = 0 except at t = to, x(t) S(t -  to) must 
be also zero except at fo- Thus

f  x ( t )  6 ( t  -  f0) d t  = f  x ( t 0) 6 ( t - t 0) d t  = x ( t o )  f  S ( t - t o ) d t ,  
Ja Ja Ja

and we simplify the above expression as

• bfJ a
x ( t ) S ( t - t o ) d t = x ( t o ) .  (1.6)

Expression 1.6 shows that when a function is integrated with the impulse 
function, we obtain the value of the function at the point where the impulse
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occurs. This is a useful property known as the sampling or sifting property 
of the impulse function. Note that the sifting property of the impulse 
function only makes sense upon integration, and do not be confused with 
the following expression:

* ( / ) i ( / - r o ) = * ( / o ) * ( f - f o )  = | "  ! '  = /o);  (1.7)0

1.4.4 Relationship Between Singularity Functions

uịt) Sịt)

-*t -*t

Figure 1.10: Basic continuous-time signals

The unit ramp function r(t), unit step function u(t), and unit impulse 
function S(t) have the following differential /  integral relations:

- L

■ £
S(t) = ~ jjT" and u(t) = I 6(r)dT.  (1.9)

Interestingly, the unit ramp and unit step functions are also associated as

Example 1.5 Assume x(t) = cos(2nt), and sketch x(t), x(t) r(t -  1 ). 
x ( t ) u ( t -  1), andjc(f)<î(f -  1), respectively.

Solution

14



x(t)
*> ! ■> 

.*>

x ( l ) r ị l - l )

0 1 2 3 4 0 1 2 3 4  
t t

x ự ) u ( t - l ) x(l)ỔO-l)

2
!\ A  A  /  0 t
V v v  0

1 -2

1 2 3 4 0
t

I 2 
I

3 4

1.5 BASIC DISCRETE-TIME SIGNALS

ft«]

îJjl
u[n]
31 
2 
l

->n -

*[»]
3'
2 
V

^  î  f  > n —•  •  •  1 •■••■■■> H
- 3 - 2 - 1  0 1 2  3 - 3 - 2 - 1 0 .  1 2  3- 3 - 2 - 1  0 1 2  3

Figure 1.11: Basic discrete-time signals

We introduce several basic discrete-time signals. The unit ramp se­
quence r[n] is defined as

r[n] =

the unit step sequence u [n] as 

u[n] =

n (n > 0),
0 (n < 0)

11 (n > 0),
0 (« < 0),

( 1. 10)

( 1.11)

15
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and the unit impulse sequence ¿[«] as

( 1. 12)

Note that unlike the unit step function u(t) and unit impulse function 
S(t), which are undefined at t = 0, the unit step sequence «[«] and unit 
impulse sequence <5[n] are defined at n = 0. Note also that these three 
time sequences have the following difference / summation relations:

s[n] = u[n] -  u[n -  I] and u[n] = ^  <5[*]. (1.14)

Incidentally, the unit ramp and unit step sequences are also associated as 
r[n] = nu[n\.

The unit impulse sequence has several important properties that de­
serve our special attention. First of all, it is evident from the definition 
that changing the sign of index does not alter an impulse sequence:

We next consider multiplying two impulse sequences as shown in 
Figure 1.12. It is clear that 6 jn] 6[n -  1] is always zero. Similarly, we can

(1.13)
k=-oo

n

k=-oo

ỗ[n -  k] = (5[fc -  n]. (1.15)

S[n]

•  •  • ——»  » «  > n
- 3 - 2 - 1  0 1 2 3

X

>/1
- 3 - 2 - 1  0 1 2 3

—1—•  •  > n
- 3 - 2 - 1  0 I 2 3

Figure 1.12: Multiplication of two impulse sequences

16



easily conclude that d'|w| ¿[/i] = <■>f/?] anil -  I ] S[n -  1] = 6[n -  1]. 
We thus deduce a property of the impulse sequence as follows:

6 [ n - k ]] 6 [ n - k 2] = { k ' = k * =  k ) ’ ( U 6 )

|0  U i * * 2).

Another important property of the impulse sequence is the sampling 
or sifting property. Consider multiplying two sequences in Figure 1.13. It 
is evident that jc[/i] S[n -  1] = jc[1] 5[n -  11, and we can generally write 
the following expression:

jc[m] 6[n -  fc] = jc[A:] <5[n -  £]. 

The sifting property enables one to expand x[n\ as

(1.17)

=

or, in short, as

+ x[-2]  S[n + 2] + x [—1 ] ¿[/i + 1] + jc[0] <S[h] 
+ jc[ 1] 6[n -  1] + x [2 \6 [n -2]  + • • • ,

00

*=-00
(1.18)

x[n]
> k

L .- 3 - 2 - 1 0 1 2 3  

X 
<?[n-l]

3 t

. 2.

1 T—1—•—• —>n 
3 - 2 - 1  0  I 2 3

*[1]5[m-1]
/

x[\]

- 3 - 2 - 1  0 1 2 3
•  > n

- 3 - 2 - 1  0 1 2 3

Figure 1.13: Sifting property of the impulse sequence
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Substituting r [n] or w[n] into *[n], we can also derive that

and

OO CO
'•[«I = Y j '■[*] -  k] = Y j k 5 1" “  *1'

k ——oo k=1

OO oo
«[«] = Y j =

k~—oo *=0

Example 1.6 It can be shown in a graphical way that 

r[n] r[3 -  n] = 26[n -  1] + 26[n -  2].

(1.19)

( 1.20)

r{n] r[3-n] r[«]r[3-n]

1 T• • • I •—L

3"
2

- 3-2- 1  0 1 2  3
T1 •  • • • >  n —•  ♦

0 1 2  3 4 5 6 - 3 - 2 - 1  03-2-1 0 1 2  3

Perform an algebraic evaluation of r[n] r[3  -  n] and derive the result 
shown above.

Solution

fc<5[3 - « - & ] ]r [ n ]  r [3 -  n] =  |  k ô [ n  -  k ] J ¿

= k S n̂ ~ k S n̂ + * ~ 3l)

(5[n -  1] + 26[n -  2] + • • • ) (5[/i -  2] + 2S[n -  1] + • • • ) 

26[n -  1] 6[n -  1] + 2 6[n -  2] 6[n -  2] 

2 ô [ n -  1] + 2 ô [ n - 2 ] .

18



PROBLEMS

Problem 1.1 Consider the time signal shown below. Sketch the amplitude 
spectrum of the time signal.

1 0

9

\  A A /

o
c

\ \ \ 7\ \ \ 6

\ \ \ 4\ \ \ 3

V  V  V 2

i

.........................................

i

0
0 1 2 3 4 5 6 7 8 9  10

/ ( H Z )

Problem 1.2 Consider the time signal shown below. The signal has two 
frequency components:

x(t) = A\  cos(2?rf \ t )  + Ai  cos(2?rfat).

Sketch the amplitude spectrum of the time signal.

/ ( s)
1 2 3 4 5 6 7 8 9  10

/ ( H z )
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Problem U  Sketch the following function: 

x(t) = r(t + 2 ) r ( - t  + 2).

Problem 1.4 Sketch the following function:

x(t) = 2 r ( t ) u ( - t + l )  + 2 r ( - t  + 2 ) u ( t -  1).

Problem 1.5 Give a mathematical expression of the function x(t) as a 
combination of basic continuous-time signals.

x(t)

Chapter 1. BASIC CONCEPTS

Problem 1.6 Give a mathematical expression of the function x(t)  as a 
combination of basic continuous-time signals.

x(t)

Problem 1.7 Which of the following expressions is correct? Choose one. 

d
a. S( t  -  t0) =  — r ( t  - 10)

b. 6( t )  = - S ( - t )

c. 6 ( t  -  t0) =  S ( - t  - 10)

d. x ( t )  5( t  - 10) = a-(/0) 6( t  -  /o)

20



Problem 1.8 Which of the following expressions is wrong? Choose one. 

d
a. u(t -  r()) = — S(t -  to)

dt

b. S ( t )  =  6 ( - t )

c. 5(1 - t 0) = 6 ( - t  + to)

d. x ( t ) S ( t - t 0) = x ( t o ) 6 ( t  - t o )

Problem 1.9 Express the following sequence as a linear combination of 
unit impulse sequences (Don't use graphic approaches! Just do algebraic 
calculation!):

jr[n] =/•[« + 2] r[-n  + 2].

Problem 1.10 Express the following sequence as a linear combination of 
unit impulse sequences (Don’t use graphic approaches! Just do algebraic 
calculation!):

x[rt] = u[n + 1] r[-n + 3].
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CLASSIFICATIONS OF SIGNALS

Chapter 2

There are many ways of classifying signals: continuous-time or discrete­
time, analog or digital, even or odd, periodic or nonperiodic, energy or 
power, random or non-random, real or complex, etc. The topic about 
continuous-time and discrete-time signals has been covered in Chapter 1. 
And, in Chapter 2, we discuss characteristics of analog and digital signals, 
even and odd signals, periodic and nonperiodic signals, and energy and 
power signals.

2.1 ANALOG AND DIGITAL SIGNALS

Digital Signal 

Figure 2.1: An analog signal and a digital signal

The term ’’analog signal” is frequently used to mean any continuous­
time signal. There is, however, a distinction between the two. An analog 
signal is a continuous-time signal for which the time-varying feature of 
the signal is a representation of a physical phenomenon. All analog signals 
are continuous-time signals, but all continuous-time signals are not analog 
signals. Similarly, there exists a distinction between ’’digital signal” and 
discrete-time signal. A digital signal is a discrete-time signal that can 
have only a finite number of values (usually binary).
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Chapter 2. CLASSIFICATIONS OF SIGNALS

The world we are living in is fundamentally an analog world, and most 
signals are thus analog. Consider, for example, taking a signal from a 
microphone and recording the signal into a magnetic tape. The signal 
from the microphone is definitely an analog signal, and the signal on the 
tape is also analog. In an analog system, however, it is generally difficult to 
remove noise and to avoid signal distortions during the data transmission. 
And, as a result of that, analog signals are inappropriate for high quality 
data transmission. Digital signals, on the other hand, use binary data 
strings (0 and 1) and allow one to achieve high quality data transmission. 
Most of the time, we obtain digital signals from analog signals via an 
analog-to-digital converter (ADC).

2.2 EVEN AND ODD SIGNALS

x(t) x(t)

»  t r n 1/
(b)

Figure 2.2: An even function (a) and odd function (b)

By definition, an even signal is described as 

x(t) = x ( - t )  (even function)

x[n] = jc[-n] (even sequence),

and an odd signal as

x(t) = - x ( - t )  (odd function)

x[n] = -x [-n ]  (odd sequence).

(2.1)

(2.2 )

(2.3)

(2.4)

For example, x(t) = cos(2jrr) is an even function, whilex  [w] = sin(rt/r/12) 
is an odd sequence. Figure 2.2 illustrates examples of even and odd func­
tions.
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An interesting fact about even and odd symmetry is that any signal
can be decomposed into two parts: one having even symmetry and the
other having odd symmetry. In other words, any time function x(t)  can be 
expressed as

-v(f) = xe( t ) + x j t ) ,  (2.5)

where the even part x e(t) and odd part x„(t) are

x ( t )+ x( - t )
X e (t )  =  --------  --------. (2.6)

and

x0(t) = -------j ------ ' (2,7)

Likewise, one may express any time sequence *[«] as

x[n] = x e[n] +x0[n], (2.8)

with

; , M  = <2.9,

and
r i  * [ « ] -* [ -« ]  

x0[n] = ------- -------- ■ (2.10)

Figure 2.3 demonstrates an example of decomposing time sequence into 
the sum of even and odd sequences. Note also the following properties of 
even and odd signals:

1. Adding / subtracting two even signals yields an even signal.

2. Adding / subtracting two odd signals yields an odd signal.

3. Adding / subtracting an even signal and an odd signal yields a signal 
that is neither even nor odd.

4. Multiplying two even signals gives an even signal.

5. Multiplying two odd signals gives an even signal.

6. Multiplying an even signal and an odd signal gives an odd signal.

25



u[n] u[-n]

Chapter 2. CLASSIFICATIONS OF SIGNALS

In

-•—•—•-- 3 - 2 - 1 0 1 2 3
n

ill

- 3 - 2 - 1  0 1 2 3

u[n] + u[-n]

111 n i „
- 3 - 2 - 1  0 1 2 3

u[n]-u[-n]

Figure 2.3: The unit step sequence decomposed into the sum of the even 
and odd sequences

Example 2.1 Derive the even and odd parts of the following time 
function:

x(t) = lOsin(r) -  5cos(2f) + 2sin(5f) cos(5f).

Solution

x ( - t )  = lOsin(-f) -5 c o s ( -2 f)  + 2sin (-5 i) cos(-5/)
= -10sin(r) -  5cos(2i) -  2sin(5r) cos(5i).

x(t)  + jc(-r) = -10cos(2i),
x(t) - x ( - t )  = 20sin(r) + 4sin(5 i) cos(5r).

x e = -5  cos(2/),
x„ = 10 sin(f) + 2sin(5f) cos(51).
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2.3 PERIODIC AND NONPERIODIC SIGNALS

A signal is a periodic signal if it completes a pattern within a measur­
able time frame, called the period and repeats that pattern over identical 
subsequent periods. A nonperiodic signal, on the other hand, is the one 
that does not exhibit a repeating pattern. Basic concept of the periodicity 
is identical for continuous-time and discrete-time signals, but detailed 
properties differ significantly. We therefore study periodic functions and 
periodic sequences separately and later discuss those differences in detail.

2.3.1 Periodic and Nonperiodic Functions

x(t) u(t)

/ 1

!

A / 1

1

. . .
- T ) T

 ̂ '  *
IT

(a) (b)

Figure 2.4: A periodic function (a) and nonperiodic function (b)

A continuous-time signal is called periodic if it satisfies

x(t) = x(t  + *7), (2.11)

where k is an integer, and 7  denotes the period of the time function. 
Figure 2.4 exemplifies periodic and nonperiodic functions. Note that for a 
periodic function with period 7, one may safely argue that the function 
is also periodic with a period 27, 37, or kT, where k is a natural number. 
Among these different values of period, the smallest one has the greatest 
significance. To avoid confusion, we call the smallest possible period the 
fundamental period of the signal and denote as 7o.

Scientists and engineers encounter a variety of different periodic func­
tions while solving problems at their hand. Among those periodic func­
tions, sinusoidal functions deserve our great attention, because, as detailed 
in Chapter 7, sinusoidal functions are the basic building block from which 
one can construct any periodic functions. A sinusoidal function is ex­
pressed as

;t(r) = A cos{ajt + <̂ ), (2.12)
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CO

Figure 2.5: Geometry of a sinusoidal function

with

U) = 2 n f  = Y '  (2.13)

where A , T , f ,  CJ, and If represent the amplitude, period, frequency, angular 
frequency, and phase of the function, respectively.

Linear combinations of two sinusoidal functions are, however, not 
always periodic. Consider a time function of the following form:

x(t)  = A\C0&(2nt/T\ + (fil) + Az cos(2;rf /72 + <P2)-

The signal is a linear combination of two sinusoidal functions whose 
periods are Tị and Ti, respectively. The fundamental period To of x(t) is 
then expressed as

To = kiTị = k2T2, (2.14)

with an assumption that integers kị and kĩ  do exist and one chooses the 
smallest possible values of them. To better understand the existence of k I 
and k2 , consider the following relation:

ụ = ụ .  (2.15>k2 T\

The above expression shows that x(t) is periodic (i.e., integers k I and it2
exist) only when the number 72/7*1 is a rational number. Incidentally, the
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fundamental frequency is the angular frequency that corresponds to the 
fundamental period, and we denote the fundamental frequency as Q such 
that

2 n
To

(2.16)

Example 2.2 Determine the periodicity of

x(t) = 2cos(3r/5 + 1) -  sin(9f/4 -  I ), 

and, if periodic, find the fundamental period 7o. 

Solution

Denote

with

and

x(t)  = *i(r) +X2 (t).

JC|(/) = 2cos(3r/5+  1),

Xi(t) = -  sin(9r/4 -  1).

Angular frequencies 0) I and u>2 are 3/5 and 9/4, respectively. There­
fore

_  2 n  IOtt _  2 7t %7t
Tị = -  = ^ - ,  T2 = -  =

0)\ 3 0)2 y

and

72 _ 24 _ _4 kỵ
Tị ~ 90 ~ 15 =  *2 '

Therefore, * (0  is periodic and its fundamental period 7o is gtven as

40 Jt
To = 4Ti = 15 r 2 = - J - .
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Example 2 3  Determine the periodicity of

x(t) = cos(31 + 1) -  sin(7rf -  1), 

and, if periodic, find the fundamental period 7o. 

Solution

Denote

with

x( t )  = X l ( t ) + X 2(t),

*i(r) = cos(3r+ 1),

and

*2( 0  = -  sin(jr/ -  1).

Angular frequencies a>\ and a>2 are 3 and n, respectively. Therefore

_  2n 2n _  2n 
Ti = —  = — , T2 = —  = 2, 

u) 1 3 0)2

and

Ik - A - l
7 i  “  2 n  ~  n  *  k 2 '

The number 3/n  is an irrational number, and x(t)  is not periodic.

2.3.2 Periodic and Nonperiodic Sequences

A discrete-time signal is called a periodic sequence if it satisfies

jc[/i] = jc[/i A:Â ], (2.17)

where k is an integer, and another integer N  is the period of the time 
sequence. Figure 2.6 exemplifies periodic and nonperiodic sequences.



*[#»] u [ n ]

J i U i l l l i U i L , ILL.
- I N  - N O  N 2N 

(a)

Figure 2.6: A periodic sequence (a) and nonperiodic sequence (b)

- 3 - 2  - 1 0 1 2 3
(b)

Similarly to expression 2.12, a sinusoidal sequence is expressed as

jc[/j] = A cos(wn + tp). (2.18)

However, unlike sinusoidal functions, sinusoidal sequences in expression 
2.18 are not always periodic. The reason is because the cosine function 
repeats itself at every time increase / decrease of 2n (i.e., cos(f) = cos(/ ± 
2tt)). On the other hand, with the integer variable n, one cannot guarantee 
for sure that cjn in expression 2.18 can be a multiple of 2n. For example,
with a rational number a>, ton can never be a multiple of 2n. In other
words, only w  being expressed as pn  with a rational number p, x[n] is 
periodic, and the fundamental period No of expression 2.18 is expressed 
as

In k  k
No = -----= —, (2.19)

w /

with the smallest possible natural number k.

A linear combination of.two periodic sinusoidal sequences is always 
periodic. And its fundamental period is given as the least common multiple 
(LCM) of each of the two periods N\ and N2:

N 0 = L C M ( N u N 2). (2.20)

4«]
/

<■ T i l t  t T l1 1 1 * 1 * 1 1 1 *  '
Figure 2.7: A ’’periodic” sinusoidal sequence: jc[/j] = Acos(^(n -  2)/5)
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Example 2.4 Determine the periodicity of 

x[n] = 2cos(3 n(n + l)/5), 

and, if periodic, find the fundamental period No.

Solution

3n oj 3 k 10i
to = — , / = —  = — , and No = — = ------ .

5 2n 10 0 /  3

The smallest natural number k that yields an integer No is 3. Thus, 
x[n] is periodic with the fundamental frequency No = 10.

Example 23  Determine the periodicity of

jc[n] = 3cos(5(n -  l)/2 ),

and, if periodic, find the fundamental period No-

Solution

(o = —, f  — —  = — , and Nn = — 
2 ’ 1 I n  4 n  0 /

_ 4  itk 
5 ‘

it is an irrational number. Therefore there exists no natural number k 
that yields an integer No. In other words, x[n] is not periodic.

Example 2.6 Determine the periodicity of

x[rt] = cos(?r/i/3) + sin(5w«/7), 

and, if periodic, find the fundamental period Nq.
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Solution

Denote

with

and

-vl«l =.vi[n] +.v2ln|.

JC| [«] = cos(;m/3).

JC2[/*] = sin(5^n/7) = cos(5^«/7 -  n/2).

With the first term jci [«],

*  ,  ^  1 1 A K, k 1
W| = 3 ' 2)r = 6 ' “ ,d

The smallest natural number k \ that yields an integer N\ is 1, and 
N\ = 6. With the second term x2 [n],

5?r w2 5 k2 14A:2
" » ■ y  /2 = 2 i  = T4’ " i  N i m A ' — -

The smallest natural number ¿2  that yields an integer W2 is 5, and 
N2 = 14. Finally, the fundamental period of x{n] is given as

No = LCM(Ni ,N 2) = LCM (6,14) = 42.

233  Sinusoidal Functions and Sequences

It has been demonstrated in the previous subsections that sinusoidal se­
quence may be a lot different from sinusoidal function in its character. We 
thus consider the following simple .expressions:

x(t)  = cos (wt) and jr[n] = cos (wn),

as prototypes of sinusoidal functions and sequences, and focus on dis­
cussing differences between them.
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Periodicity in time domain

The time function *(f) is always periodic as a function of time t, and the 
fundamental period of the signal is

2 n
To = —  ■to

The time sequence x[/i], on the other hand, may not be periodic as a 
function of time n. It is periodic only when to = pn  (with a rational 
number p), and the fundamental period of the signal is given as

to

with the smallest possible natural number k .

Periodicity in frequency domain

Discussing periodicity in frequency domain is to argue if we observe any 
repeating pattern while we change to to to + cjq. Sinusoidal functions are 
never periodic as functions of frequency:

cos((oi + a»o) t) *  cos(tot).

In other words, changing frequency always yields different signal. S i­
nusoidal sequences are, on the other hand, always periodic in frequency 
domain with too = 2/r:

cos((w + 2 n) n) = cos (ton + 2nn) -  cos(ton).

It may sound puzzling at first, but this consequence arises from the ba­
sic nature of discrete signals that n must be an integer. This interesting 
property of sinusoidal sequences will be revisited in Chapter 11.

Frequency and oscillation

Related to the periodicity in frequency domain, we can easily argue that 
for sinusoidal functions, increasing frequency means faster oscillation. It 
is, however, not the case for sinusoidal sequences. Figure 2.8 demonstrates 
that jc[h] exhibits no oscillation with to = 0. As to increases to n / 12, /r/6 , 
and finally upto n, x[n] shows faster and faster oscillation. Exceeding tz. 
however, does not accompany stronger oscillation. Instead, the oscillation
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x[n] = cos(0-n) ' ' .v[//] = cost lirn)

n

Slowest oscillation

x[n] = cos(;r/i/12) .v[H] = cos(23/r»/12)

.tîTTT TTTît.
jc[/j] = co s(/t« /6 ) A ,r[«] = cos(l \ nn/ 6)

„.rTÎTr,. .tT'It,. .tTTTt. .r V f i
jc[«] = cos(;th / 4) x[n] = cos(7 /r« /4 )

•TVvS^
x[n] =  cos(7tnl l ) ;c[n] = cos(3/r/i/2)

1 1 1 1 , " 1 ! î Î
n i l l 1 1 1 ., 1
x[«] = cos( ^ m)mm m»  n

Fastest oscillation

Figure 2.8: Sinusoidal sequences x[n)  = cos(wn) with different values of 
angular frequency u
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gets slower as cu increases from n  to 2n. In short, increasing frequency 
does not always accompany faster oscillation. And, in connection to 
the repeating pattern in frequency domain, we conclude that sinusoidal 
sequences exhibit the strongest oscillation when u> = (2k + 1 )/r and the 
slowest oscillation (in other word, no oscillation) when cj = 2kn.

2.4 ENERGY AND POWER SIGNALS

For a continuous-time signal x ( t), total energy is defined as

\x(t)\2 dt, (2.21)

and average power as

1 CT
P=  lim — / \x(t)\2dt. (2.22)

T—>°° 2r J_T

For a discrete-time signal jc[/i], total energy is defined as
CO

£ =  2  |jc[n]|2> (2.23)
n= —oo

and average power as

1 *
P = >Um Î T Ï T  E  (2'24)k->oo 2k + 1

n=-k

Based on the definitions of E and P, we further define the following:

• A signal x(t)  or x[n] is an energy signal if and only if 0 < E < oo 
and consequently P = 0.

• A signal x(t)  or x[n\ is a power signal if and only if E = oo and
0 < P < oo.

If a signal is a power signal, then it cannot be an energy signal or vice 
versa; energy and power signals are mutually exclusive. A signal may be 
neither an energy nor a power signal, and almost all periodic functions of 
practical interest are power signals.
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Example 2.7 Determine whether the following signal is an energy 
signal, power signal, or neither of them.

x[n] =

Solution

I (1/2)" (/!><)).
0 (otherwise).

CO OO CO

Z  W » ]I2 = Z ( , / 2)2" = Z (1/4)" = TTT74 = 3-»=-OO „=0 „=<)

£  is finite, and jr[n] is thus an energy signal.

Example 2.8 Determine whether the following signal is an energy 
signal, power signal, or neither of them.

Solution
OO i»QO

\u(t)\2 dt  = I  \ d t  = oo.OO J 0
P =  lim i -  f T \u(t)]2dt = lim f T I d t

T-»oo 2 r  y_T i* *oo 2 r  yo

. r  1 = lim —- = - .
t - * o o  2 t  2

x(t) is thus a power signal.

Example 2.9 Determine whether the following signal is an energy 
signal, power signal, or neither of them.

x  (r) = sin(f).
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Solution
/ OO /• 00

|jr(/)|2d i =  /  sin2(f) = 00.
00 •/ —00

P = lim f  |jc(r)|2 i/r = lim f  sin2(t)dtr- 00 2r y_T t —»00 2r 7_r
1 /*T 1 /"r

= lim -  /  sin2(/) dt = lim —  1 -  cos(2r) di
r -00  T 70 * -»  2r y0

= lim t -  -  sin(2r)
r-> oo  2 r  2

r  sin(2r) 1
= lim - —  lim — ------=

r —*00 2T t—»00 4 t 2

x(t) is thus a power signal.

Example 2.10 Determine whether the following signal is an energy 
signal, power signal, or neither of them.

x[n] = r[n ] .

Hint: Refer to expression B.48.

Solution

E = f j  k M I 2 = i > 2 = ~ .
n= - 00 n= 1

1 * 1 *
P = lim —— - V  |r[/»]|2 = lim —— - V  n2

k—00 2k + 1 *-.00 2k + 1
n=-k  n = 1

1 k(k + \ )(2k + 1) Jt(ik + 1)
= lim ——  ---------- ----------= lim ------ ---- = 00.

*->« 2k +1 6 *-00 6

x[n\ is thus neither an energy signal nor a power signal.
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PROBLEMS

Problem 2.1 Determine the period T of the following signal: 

x(t) = sin(/rf/2). 

and sketch the signal for 0 < t < IT.

Problem 2.2 Determine the period T of the following signal:

x(t) = cos (nt), 

and sketch the signal for 0 < t < 27’.

Problem 2.3 Find the fundamental period 7o of the following signal: 

x{t) = 3cos2(2jt//5) -  2sin2(7rf/3).

Problem 2.4 Find the fundamental period 7o of the following signal: 

x(l)  = 2sin(3jri/4) + sin2(^r/5).

Problem 2.5 Find the fundamental period No of the following signal: 

x[n\ -  2cos(;r(3/! -  l)/5 ) + cos(jr(5/! + l)/3 ).

Problem 2.6 Find the fundamental period No of the following signal: 

jc[n] = 2cos(w(5n -  l)/7 ) -  3cos(^(3n + l)/5 ).

Problem 2.7 Consider the following signals: x(t) = cos(u>t) and x [/i] =? 
cos(ojn). Which of the following explanations is correct? Choose one.

a. jc(t) may not be periodic as a function of time.

b. Fundamental period No of x[n] is In/cj.



c. The highest oscillation of *[«] occurs when a> = (2k + 1 )n with an 
integer k.

d. x(t)  may be periodic in frequency domain.

Problem 2.8 Consider the following signals: x(t) = cos(a>t) and .r[n] = 
cos (con). Which of the following explanations is correct? Choose one.

a. jc[/i] is always periodic as a function of time.

b. Fundamental period No of x[n] is 2n/cj.

c. The highest oscillation of Jt(f) occurs when u> = (2k + 1 )n with an 
integer k.

d. x(t)  is never periodic in frequency domain.

Problem 2.9 The total energy E  and average power P of a time function 
x(t)  are given as

Chapter 2. CLASSIFICATIONS OF SIGNALS

respectively. Determine whether the following signal is an energy signal, 
power signal, or neither of them:

Problem 2.10 The total energy E and average power P of a time sequence 
x[n] are given as

respectively. Determine whether the following signal is an energy signal, 
power signal, or neither of them:

jc[h] = cos(3 nn).

E =  \x(t)\2dt and P =  |jc(f)|2^f.

x(t)  = e~ll2u(t).

40



Chapter 3

OPERATIONS ON SIGNALS

As argued in Chapter 1, one interacts with a system via signals and iden­
tifies the nature of the system by observing how the system operates on 
signals. In Chapter 3, we summarize various operations a system may 
act on signals and their mathematical expressions. We also discuss how 
continuous-time and discrete-time signals may react in a significantly 
different way to an operation that is apparently similar for the two cases. 
We consider two representative types of operations: amplitude and time 
operations.

3.1 AMPLITUDE OPERATIONS

A system may influence the amplitude of an input signal x(t), and we can 
generally express the operation of the system as

where A and B are constants. Depending on values of A and B, we consider 
three possible cases: amplitude scaling, amplitude reversal, and amplitude 
shifting.

Amplitude scaling is expressed as y(t) = Ax(t). Signals are being 
amplified with |A| > 1 and attenuated |A| < 1. Figure 3.1 is an example 
of amplitude scaling with A = 2. Amplitude reversal is expressed as 
,v(f) = -x( t ) ,  and signals are reflected about the horizontal axis. Figure
3.2 is an example of amplitude reversal. Note that for sinusoidal functions,

* ( 0  y( t )  =  2x(t)

y(t)  = Ax(t) + B, (3.1)

A
2

- 1
-2

Figure 3.1: An example of amplitude scaling
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y( t )  = - x( t )
A

Figure 3.2: An example of amplitude reversal 

x(t) >>(f) = *(/)-!

Figure 3.3: An example of amplitude shifting

amplitude reversal is identical to 180° phase shift:

cos(a>f + <p ± tt) = -  cos(a»f + tp).

Amplitude shifting is expressed as y(t)  = x(t)+B.  Figure 3.3 is an example 
of amplitude shifting with B = -1 .

All of the above amplitude operations can work simultaneously. Figure
3.4 shows that three operations presented in Figures 3.1 - 3.3 may occur 
at the same time (A = -2  and B = -1). While processing expression 3.1, 
one should must perform amplitude shifting later than amplitude scaling 
or reversal. Performing amplitude shifting prior to amplitude scaling /  
reversal causes a different result:

- 2 (x(t) -  1) = -2x( t )  + 2 * -2x(t )  -  1.

Figure 3.4: An example of combined operations on amplitude



We have so far considered amplitude operations on continuous-time 
signals. Previous discussions about amplitude operations are, however, 
not limited to continuous-time signals. Considering dliscrete-time signals, 
one can express amplitude operations as

>[«] = Ar[n] + B, (3.2)

and utilize aforementioned conclusions without problem.

3.2 TIME OPERATIONS

A system may influence the way signals vary with time, and we can 
generally express the time operation of the system as

y(t) = x(at  + b) (continuous-time), (3.3)
y[n]=x[an + b] (discrete-time), (3.4)

where a and b are constants. Depending on values o f  a and b, we may 
consider three cases: time shifting, time reversal, and time scaling.

3.2.1 Time Shifting

Time shifting is expressed as

y(t) = x(t  + b) (continuous-time), (3.5)
y[n] = x[n + b] (discrete-time), (3.6)

x(t) y(t )=x(t+/r)

/ /
z l  "  _ z

/1t
-*

X n\ y[n] = x[n -2 \
3‘
?]i

—•  ♦ • — ’ T T t—1—1—1— >n — > •  ^ T >n
- 3 - 2 - 1 0 1 2 3  - 3 - 2 - 1 0 1 2 3

Figure 3.5: Examples of time shifting operations
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x(t) = cos(aj/) _y(t) = x(t -  774) = sin(ft)i)
A

- v 2 -Y 4
7 7 A 7 7 2

Figure 3.6: Time shifting of a sinusoidal function

with b being a real number for continuous-time and an integer for discrete­
time signals. A positive value of b means signal is being advanced (or 
being shifted to the left), and a negative value of b means signals is being 
delayed (or being shifted to the right).

It is noteworthy that sinusoidal functions are always periodic and, 
therefore, a sinusoidal function may time shift to the original input function 
(cos(a»i + 2n) = cos(iuf))- Moreover, a cosine function may time shift to 
a sine function, and vice versa, because a sine function is the T /4  time 
delay (90° phase shift) of the cosine function whose frequency is identical 
to the sine function:

Note that physical meaning of phase shift is time advance/delay, and 360° 
phase shift implies that a periodic signal is time shifted to its original form 
(one period time shifting).

Contrary to sinusoidal functions, sinusoidal sequences are not always 
periodic and, therefore, a sinusoidal sequence may never time shift to the 
original input sequence. In addition to that, a periodic cosine sequence 
may not time shift to sine sequence. In fact, cosine and sine sequences 
time shift each other if and only if the fundamental period No of those 
sinusoidal sequences is a multiple of 4.

= cos ( u t  -  = sin(wi)-
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Example 3.1 Derive the most abstract analytic expressions of sinu­
soidal sequences shown below.

r
-i ‘ ¡ I F
jr,[w]

t T
/vo = lu

I t  t l l u
1 * . , 1 1

v [n] = .r,[w-3]

‘i l l l u
m w

y,[»] = x2[n + l]

t T I T ' t l T T t  j
-l * i n ‘  *i

Solution

jci [n] = cos(27t/i/ 12) = cos(7rn/6),

yi [n] = jcj [n -  3] = cos(7r(n -  3)/6) = cos(«r«/6 -  n/2)
= sin(jrn/6),

JC2 [n\ = cos(2;rn/10) = cos(;rn/5),

3̂ 2 ["] = X2 [n + 2] = cos(n(n  + 2)/5) = cos(tt« /5  + 2n/5).

3.2.2 Time Reversal

Time reversal is expressed as

y{f) = x  (—/) (coritinuous-time), (3.7)
y [/i]= jc[-« ] (discrete-time). (3.8)

Time reversed signal is obtained as a reflection of input signal about the 
vertical axis (r = 0 or n = 0 ).
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x[n]

,y(/) = x(-/)

Chapter 3. OPERATIONS ON SIGNALS

1 T T•  •  •  •  •—1— 1—>n
3 - 2 - 1  0 1 2 3

* I

T T  1 -*— ■— •  •  •  •  •
- 3 - 2 - 1  0 1 2 3

■> n

Figure 3.7: Examples of time reversal operations

Example 3.2 Sketch even and odd parts of the following signal:

x(t) = u(t  + 1 ) u( - t )  + u{l) r ( - t  + 1 ).

Hint: Refer Example 1.4 for the shape of *(/).

Solution

x(t)

U N ,
-i i 

+
x(-l)

i

/
-1

2xt(t)
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3.2.3 Time Scaling

Time scaling is expressed as

y( t ) = x(at) (continuous-time), (3.9)
y[rc] = x[an] (discrete-time), (3.10)

where a is a constant. The original signal is time compressed with \a\> \ 
and time expanded with \a \ < 1 ; a negative value of a invokes time reversal 
along with .the time compression or expansion.

Figure 3.8 shows that for continuous-time signals, time compression 
can be always compensated by time expansion, and vice versa. In other 
words, one may perform time scaling operations without any loss of infor­
mation. It is, however, not the case for discrete-time signals. Figure 3.9
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x{l) y( t )  = x(2t )

Chapter 3. OPERATIONS ON SIGNALS

x(t) y( t )  = x( t !  2)

t

/tv

Figure 3.8: Examples of time scaling operations on continuous-time signal.
Time expansion after time compression restores the original 
signal.

Figure 3.9: Examples of time scaling operations on discrete-time signal.
Time expansion after time compression does not restore the 
original signal.

demonstrates that time compression of discrete-time signals may cause 
data loss.

3.2.4 Combined Operations on Continuous-Time Signals

Time operations are generally expressed as

x[n] y[n] = x[in]

x[n] y[n] = x[n/3]

y(t) = x  (at + b).
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This simple expression should be carefully interpreted, because the expres­
sion implicitly demands one to perform time shif ting prior to time reversal 
or scaling. Consider performing time scaling (with factor a) prior to time 
shifting (with factor b). These two sequential operations are expressed as 
follows:

w(t) = x(at ), 
y(t) = w(t + b ).

And the final expression of the output signal should be 

y(t)  = x(a( t  + b)) = x(at  + ab) t  x(at + b).

On the other hand, performing time shifting (with factor b) ahead of time 
scaling (with factor a) is expressed as follows:

h>(/) = x(t  + b), 
y(t) = w(at).

And the final expression of the output signal is

y(t) = x(at  + b).

Example 3.3 Consider the following signal:

jc(/) = u ( t ) u ( - t  + 1) +u(t -  l ) r ( —t + 2 ),

and sketch x ( - t / 2  + 1) . Hint: Refer Problem 1.5 for the shape of
x(t).

Solution

x(t) x(- t/  2 + 1)
A

*0 + 1) x(i/2  + l)
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Example 3 . 5  C o n s i d e r  t h e  f o l l o w i n g  s i g n a l :

x(t) = 2r(t  + 2 ) u ( - t  -  1 ) + u(t  + 1 ) u( - t )  r ( - t  + 1 )
+ u(t) u ( - t  + 1 ) + u(t -  1 ) r ( - t  + 2 ),

and sketch x ( - t )  [¿(f -  1) -  6( t  + l)] /2  . Hint: Refer Problem 1.6 
for the shape of x (/).

Solution
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3.2.5 Combined Operations on Discrete-Time Signals 

Sequential approach

We have discussed that while performing sequential operations on continuous­
time signals, one needs to proceed time shifting prior to time reversal or 
scaling. Same principle works with discrete-time signals.

Consider the following operation with the sinusoidal sequence x[n] in 
Figure 3.10:

y [ n ] = x [ - 2 n - 2 ]

We separate the above operation into the following two sequential opera-

4"]y :tTTTTTTt, . m i l U P
Figure 3.10: A sinusoidal time sequence
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w[/i] = x[n -  2]

D ili*

A

t TTTt . .t TITt

♦t î T Î Î T T t t »
-i
y[n]= w[-2/i] 

I

^ i m u

t TTTt . .rTi
W ............w •  1 1 1 > n

Figure 3.11: A graphical representation of sequential operations 

tions:

w [ / i ]  =  x[ n  -  2 ] ,

y [ « ]  =  w [ - 2 n \  =  x [ - 2 n  -  2 ] .

Figure 3.11 shows the graphical representation of the sequential operations.

Example 3.6 C o n s i d e r  x [ n ]  i n  F i g u r e  3 . 1 0 ,  a n d  s k e t c h  y [ n ]  t h a t  i s  

g i v e n  a s

Solution

y [ n ]  =  x [ i n  +  4 ] .

w[n] = x[n + 4]

. - T T t r j î T T î t ,  , , r î .• * l i l  i l i * -
y[n] = w[3n]

. t I t . , ,  . t I t .  . t "
<

T ,  , . T Î T .  . t I t .
n i l  ¡ ¡ r , 1 ] 1  1 1 1  ¡ 1 1
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Point matching approach

Sequential approach is not the only possible approach for discrete-time 
signals. If jr[w] is nonzero for a finite range of n, we may evaluate every 
possible v[m]. Consider once again the combined time operation that we 
have dealt with:

v[n] = x [ - 2 n -  2 ).

The above expression enables one to evaluate y [ n ] as follows: 

v[0] = .v[-2], ,v[l] = v[-4], y[2] = .v [-6 |. v|3] = x [ - 8], ■■■ .

Figure 3.12 illustrates the above process. Note that Figures 3.11 and 3.12 
exhibit the identical output signal v[/i].

*]

i t t t . i r 1 l 1 Y ~

i n * * . , i i U 1 *

y[n] = x[-2n - 2]

. T Î Î I t .  . t T I I t . . t T"h. . t T L
w  . W  ^

Figure 3.12: Point matching approach

Algebraic approach

We can occasionally rely on an algebraic approach as well. To do that, we 
first need the analytic expression of x[n\.  Consider x[n] in Figure 3.12. 
We note that the fundamental period Nq is 24 and cosine sequence has 
time delayed with b -  - 4. We thus: write that

x[n] = cqs(27r(« -  4)/24) = cos(/rn/12 -  /r/3)

and derive the analytic expression of y[n] in Figure 3.12 as

>[«] = x[-2n  -  2] = cos(/r(-2w -  2)/12 -  tt/3) = cos(-;rn /6  -  n/2)
= cos(?rn/6  + n ) 2 ) = -  sin(^n/6 ).
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Example 3.7 Consider x  [n] in Figure 3.12. Derive the most abstract 
expression of the following signal:

;y[n] = x[3n + 4],

and sketch the signal.

Solution

x[ / l ]  =  C0S(7Trt/12 -  jt/ 3 ) ,

jy[n] = x[3n + 4] = cos(;r(3n + 4)/12 -  n/3)  = cos(;rn/4).

The graphical representation of y[n] can be found in Example 3.6.

Example 3.8 Consider the following signal:

jc[«] = «[n + 4] u[-n  + 3] +S[n + 1] +S[n + 2], 

and sketch*[ - 2« + 1 ] (<S[w- 1 ] -<S[n + 1] ) .

Solution

2 f<

:»]

' TT  U T T T ‘• • • 11 1 1 1 >♦ » » n

x[n + 1]

2*1

T T '1 ' « • « » »  n

x[ - 2  n + l](<S[n - 1] -  8 [n + 1]) 

«

i
Û

x[~2 n +1] 

»2

c=> T

54



PROBLEMS

Problem 3.1 What is the analytic expression of the sinusoidal function
-v (/) ?

Problem 3.2 What is the analytic expression of the sinusoidal function
x(r) ?

Problem 3.3 What is the algebraic expression of the sinusoidal sequence 
x[n)l  What is the most abstract algebraic expression of y  [«] = x[ in  -  4]?

Ac[n]

t l l i . t T T T T T T T t .
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Problem 3.4 What is the algebraic expression of the sinusoidal sequence 
x[n]? What is the most abstract algebraic expression of y [n] = x[2n + 5]?

x[n]

H i « .

Tm w .
■. t T Î T T T T T t ».

Problem 3.5 Sketch the even part x e(t) and odd part xa(t) of the lime 
function x(t).

-4 -2 0 2 4  -4 -2 0 2 4  -4 -2 0 2 4
t t t

Problem 3.6 Sketch the even part xe(t) and odd part x0(t) of the time 
function x(t).

-4 -2 0 2 4 -4 -2 0 2 4  -4 -2 0 2 4
I I t
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Problem 3.7 Sketch V(f) = x ị t /2 -  1 ).

Ì

I

)ịt) o- ........ ........... —---------------------------------- —
-I

-2

' 3-IO -8 -6 -4 -2 0 2 4 6  8 10
t

Problem 3.8 Sketch y(t) = x ( - t / 2  + 1).

3

2

I
y(t) 0 ------------------ -------------------- -

-I

-2

- 3 ------------------------------------------------------------------- --------------------------------------------------------------------
-10 -8 -6 -4 -2 0 2 4 6  8 10

t
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Problem 3.9 Sketch yfnl = -2x[3n + 21 + 1.

x[n]

-10 -8 -6 -4 -2 0 2 4 6 8 10
n

3 1--------------------------------------------------------------------------------------------------------------------------------------

2

I
y[n] o -------------------------------------------------- -------

-i
-2

-31----------------------------------------------------------
-10 -8 -6 -4 -2 0 2 4 6 8 10

n

Problem 3.10 Sketch y[n] = x[2n -  1] + 1.

. • • , i  i * « T ' ’ I t .  T T  .A |  1 *

-10 -8 -6 -4 -2 0 2 4 6 8 10
n

31----------------------------------------------------------
2

1

y[n] o ■ —--------------------------------------------------
-i
-2

-3-----------------------------------------------------------
-10 -8 -6 -4 -2 0 2 4 6 it 10

n

Sketch y[/i] = -2*  [3n + 2] + 1.

. . .  * t  . r

<»

* •  T T .  .  ,
i  |  4
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UNDERSTANDING SYSTEMS

We have argued that systems may operate on signals in a variety of different 
ways. And the argument has been focused on signals instead of systems. 
We now focus more on systems themselves. A system may be regarded 
as a mathematical model of a physical process that relates input signals 
to output signals. Although a system may have many input and output 
signals, we focus our attention on the single-input single-output case.

4.1 CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

Chapter 4

Figure 4.1: Continuous-time and discrete-time systems

A system is continuous-time if the input and output signals are time 
functions. It is discrete-time if the input and output signals are time 
sequences. In a continuous-time system, time is measured continuously, 
and the system is usually described by a differential equation, algebraic 
equation, polynomial equation, or integral equation, etc. For a discrete­
time system, time is defined only at discrete instances and the system 
is described by a  difference equation or any other way the input-output 
property of the system may be specified.

RC circuit are good examples of continuous-time systems. Figlife 4.2 
illustrates an RC circuit that has a resistor and capacitor whose resistance 
and capacitance are R and C, respectively. Considering the battery voltage 
as the input x(t)  to the system and the capacitor voltage as the output 
y(t),  we describe the property of the system via the following differential
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R

+
x(t) c  z z  y(t)

- I

Figure 4.2: An RC circuit as a continuous-time system. x(t) represents 
input battery voltage and y{t) represents output voltage at the 
capacitor.

equation (Alexander and Sadiku 2016; Gilibisco and Monk 2016):

As detailed in Chapter S, one can analytically solve expression 4.1 and 
derive an input-output relationship shown in Figure 4.3.

A good example of discrete-time systems is a savings account. Suppose 
you visit a bank, open a savings account, and deposit a certain amount of 
money. You, from then on, use the account: one day you deposit more 
money, another day you withdraw your money. Note that while using the 
savings account, the balance of the account changes on a daily basis (i.e., 
without a new transaction, the balance remains the same throughout a 
day). Denoting the fixed value of the daily interest rate as p, we express 
the balance as follows:

which states that the balance of the previous day (>[« -  1 ]), interest that 
comes from the balance of the previous day (py[n -  1]), and any new

Figure 4.3: A continuous-time input to the RC circuit in Figure 4.2 yields 
a continuous-time output.

R C ^ - + y ( t )  = x(t). (4.1)

y [ n ] = y [ n - l ] + p y [ n - l ] + j : [ n ] ,

x(0 y(t)
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î ^ î î
' T T î T Î l I l T T I t ,,

Figure 4.4: A savings account as a discrete-time system. jc[n] represents 
daily deposit or withdrawal and y[n] represents daily balance 
of the savings account.

transaction (a [n] ) altogether constitute the new balance. Rearranging 
terms of the above expression, we derive the difference equation that 
characterizes the savings account as

y[n] -  (1 +p)y[n -  1] = .t|n ]. (4.2)

Figure 4.4 illustrates the input-output relationship of the savings account.

4.2 LINEAR AND NONLINEAR SYSTEMS

ax, +bx2

.Vi 

■Vî 

a y ,  +  b y  2

Figure 4.5: Concept of linear system

A linear system is one that guarantees a linear relationship between 
input and output signals. Suppose there has been two experiments with 
a  system; input signals Jti and have yielded output signals y\ and yi, 
respectively. Knowing the system is linear, one can safely argue that with a 
linear combination of x\ and x j  as an input (i.e., ax\ + bx2), we would get 
the same.linear, combination of yi and y2-as the output (i.e., ay\ + by2):

Linearity is a nice property that ensures one to safely predict an output 
o f a system. Nonlinearity,'oh thfe Other hand, is troublesome, 'because, 
with a nonlinear system, it is generally hard to predict an output. Shock 
waves, for example, have to be considered nonlinear phenomena. The RC 
circuit in Figure 4.2 can safely be regarded as a linear system as far as the 
resistance R or capacitance C do not vary significantly with the input jc(/)
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Figure 4.6: An analogy of linearity (a) and nonlinearity (b)

or output y(t). Hearing an announcement that the bank would change the 
interest rate according to how much money remains in the savings account, 
we have to modify expression 4.2 into an appropriate nonlinear equation.

Example 4.1 A continuous-time system is described by the following 
expression:

y(t) = x \ t ) .

Determine whether the system is linear or nonlinear.

Solution

We assume yi = x 2 and y i  = x \. We then write X3 = ax\ + bx2,
9 ~

y j  = ay 1 + byi, and verify if y 3 = xj.

LHS: >3 = ax\  + bx\.
RHS: x \  = (ax 1 + bx2)2 = a2xj  + b2x \  + 2abx\  X2 .

We see that yj  ^  x\,  and thus the system is nonlinear.
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Example 4.2 A continuous-time system is described by the following 
expression:

v(t) = cos(3 t)x(t).

Determine whether the system is linear or nonlinear.

Solution

We assume >>| = cos(3r);c| and V2 = cos(3 i)* 2- We then 
write JC3 = axi + bxi, >’3 = ay\ + by2, and verify if y$ = cos(3f)-*3-

LHS: ys = a cos(3t) x\ +b  cos(3i) xj.
RHS: cos(3f) *3 = cos(3r) (ax\ + ¿>*2).

We see that >3 = cos(3f) *3, and thus the system is linear.

Example 4.3 A continuous-time system is described by the following 
expression (R and C are constants):

R C ^  + y ( t )= x( t ) .  
at

Determine whether the system is linear or nonlinear.

Solution

We assume RCy\  + y\ = x\ and RC y '2 + yz = xi- We then
9

write JC3 = ax\ + hx^  y?> = ay\ + by2, and verify if RC y3 + ^3 = *3.

LHS: R C y.3 + >3 = RC (a>!i + ¿>>2)' + (ay\  + hyz)
= aRC y\  + bRC y '2 +ay \+  by 2 

■=■a(RC  / ,  + y  1) + b(RC y ' j+ yi)' -  <*x\ + bxi 
RHS: x i = a x \ + b x i .

We see that RC y ’3 + V3 = JC3, and thus the system is linear.
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4.3 TIME-INVARIANT AND TIME-VARYING SYSTEMS

x(t)

x(t±tu)

Figure 4.7: Concept of time-invariant system

A time-invariant system is one that maintains a consistent input-output 
relationship and satisfies an expectation that with an input-output result 
today, we would get the same input-output result tomorrow. The RC circuit 
in Figure 4.2 can safely be regarded as a time-invariant system as far as 
the resistance R and capacitance C are time-independent constants. Our 
savings account is a time-varying system if the interest rate p  varies with 
time.

A quick way of diagnosing the time-invariance of a system is to con­
sider two cases: ( 1 ) let the system work and then let time go, and (2 ) let 
time go and then let the system work. Having an identical result, we regard 
the system time-invariant. Otherwise, the system is a time-varying system. 
Figure 4.8 demonstrates that a time scaling system is NOT time-invariant. 
The system demonstrated in Figure 4.8 is expressed as

y ( t ) = x ( 2 t).

We first assume an input signal x(t), proceed the time compression and 
let time go (i.e., time shifting). The result is depicted as (/). Secondly, 
we time shift the input signal ahead of time compression. The result is 
illustrated as y 2(t). We clearly observe that y 2(t) differs from >>i(0  and 
conclude that the system is a time-varying system.

x(t)

£ ±
- 2  2 ‘

x(t)

J ± U ,
-2  2

AOA
J I l
-i i i

I ,

y,{‘ )

- l o . ,

.v2(0J = L
- 2 2 '  0 4 '  0 2

Figure 4.8: An example of time-varying system
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Example 4.4 A continuous-time system is described by the following 
expression:

y(t) = sin(.r(/)).

Show that the system is time-invariant.

Solution

To prove the time-invariance of the system, we have to use 
the general representation of input signal \ (t ).

x ( t )  -»  y ( t )  = sin(x(0 ) -» >-1 (t) = y ( t  ± to) = sin(x(r ± to)),  

* ơ )  -»  x 2( t )  = x ( t  ±  t o ) -+ y 2(t)  = sin(x20 )) = s i n ( x ( t ± t o ) ) .

We see >1 (f) = y>2 (t), and thus the system is time-invariant.

Example 4.5 A discrete-time system is described by the following 
expression:

y[n] =nx[n].

Show that the system is time-varying.

Solution

To prove the time-variance of the system, it is sufficient to 
show a counterexample. We consider x[n\ = 6 [n].

x L«1 = <?[«] —* y i« J  = n x\n \  = = 0.
-»  y iW  = > [ » - ! ]  = o ,

jr[n] = <5[*] —» X2[n] =x[n -  1] = -  1]
—» y2 [^] = n x 2 [n] = n 6 [n -  1 ] = 6 [n -  1 ].

We see >'i [/i] + >>2 [n], and thus the system is time-varying.
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4.4 LINEAR TIME-INVARIANT SYSTEMS

Figure 4.9: An LTI system and the principle of superposition

Linearity and time-invariance altogether substantiate the concept of 
linear time-invariant (LTI) system. As the name itself implies, an LTI 
system is one that is both linear and time-invariant. LTI systems are of 
our great interest because many physical systems can be safely considered 
linear and time-invariant. On the top of that, the principle o f superposition 
is applicable to an LTI system.

Figure 4.9 (a) shows the input-output relation of the RC circuit depicted 
in Figure 4.2. We know we may safely regard the RC circuit as an LTI 
system. Time-invariance of the system allows one to establish the input- 
output relation in Figure 4.9 (b). And a linear combination of the input- 
output relations in Figure 4.9 (a) and 4.9 (b) yields the input-output relation 
in Figure 4.9 (c). Figure 4.9 well demonstrates how convenient it is to 
handle an LTI system. More detailed explanation about LTI system is 
provided in Chapter 5.

4.5 OTHER CLASSIFICATIONS OF SYSTEMS

4.5.1 BIBO Stable and Unstable Systems

\x\<B, v\< B,

Figure 4.10: Concept of BIBO stable system
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A BIBO stable system means that hounded- input to the system leads 
to bounded-output. Figure 4.10 shows the concept of bounded-input 
and bounded-output. Moving average systems are BIBO stable systems. 
Consider, for example, a discrete-time system that is described as

?[«] = -  1] +-v[h ] +-v[h + 1Ị).

It is evident that bounded-input sequence v[w| always leads to bounded- 
output v[rt].

An example of BIBO unstable system, on the other hand, is an accu­
mulator system (Figure 4.11) that is expressed as

n n-1
v[n] = z  = X  -*1*1 = y[n -  1 ] +x[n],

k=-oo k- -oo

Assuming X[n] = u[n], we derive y[n] = r[n + 1 ] (expression 1.13). 
In other words, bounded input (|w[n]| < 1) leads to unbounded output 
(indefinitely increasing ramp sequence). The accumulator is thus a BIBO 
unstable system.

4.5.2 Causal and Non-causal Systems

A causal system is one whose present response does not depend on future 
input. In other words, only past or present input values influence present 
output. Every physical system is causal, and causality is an essential 
constraint for time systems. It is known that an ideal filter is non-causal 
and is not physically realizable. It should be noted, however, that causality
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is not an essential constraint in applications where the independent variable 
is not time, such as image processing.

Examples of causal systems include

y[n] = (x[n])2, 
y[n] = *[n] + x[n -  1],

whereas the following expressions represent non-causal systems:

y[n] = x[n + 1 ] -Jt[n], 
y[n] = * [1  - n \ .

4.5.3 Systems With and Without Memory

A memoryless system is one in which present output depends only on 
present input; it does not depend on past or future input. When an output 
of a system depends on past input, the system is said to have a memory. 
A system with a memory is also called a dynamic system, whereas a 
memoryless system is called a static system.

An example of memoryless system is 

y[n] = (jc[«])2.

Resistors are also considered to be memoryless:

y(t)  = Rx(t),

where R, x(t), and y(t) represent the resistance of a resistor, input current 
to the resistor, and output voltage difference around the resistor, respec­
tively.

Capacitors are, on the other hand, considered to have memory:

y (0  = ^ y *  x (t ) dr,

where C, x(t), and y(t) represent the capacitance of a capacitor, input 
current to the conductor, and output voltage difference around the capacitor. 
The accumulator system in Figure 4.11 is another example of system with

Chapter 4. UNDERSTANDING SYSTEMS
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memory. The following expressions also represent systems that have 
memory:

v[n] = .r[n| + .v|/z -  11.
>’[«] = -v | n + 11 -  -V|h ]. 
y [n ]  =  -V [ 1 — /i | .

4.6 INTERCONNECTED SYSTEMS

Series (Cascade) Interconnection

Parallel Interconnection

&

Series-Parallel Interconnection

-*• y

Feedback Interconnection

to---------- * 5,. i  k _____'

K-

Figure 4.12: Block diagrams of several interconnected systems

Systems may be connected to form a larger system. In such a case, 
systems that constitute the larger system are called subsystems of the larger
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interconnected system. Depending on the way subsystems are connected, 
a variety of different interconnected systems can be realized. Figure 4.12 
shows examples of interconnected systems.

Chapter 4. UNDERSTANDING SYSTEMS

Example 4.6 Consider the parallel interconnection in Figure 4.12. 
The subsystems of the interconnected system are described as follows:

S\ : yi[n] = 2x\[n] +4x\[n -  1],

$2 : y2 [n] = x 2 [ n - 2 ] + ^ x 2 [ n - 3 ] .

What then is the relation between the input x[n] and output y[w] 
sequences of the interconnected system?

Solution

y[n] = y i[n ] + y 2[n]

= 2xi M  + 4*1 [n -  1] + x 2[n -  2] + ^ x2[n -  3].

Note thatx[n] = x\ [n] = x2 [n]. The final form of the output sequence 
thus becomes

y[n] = 2 x [ n ]+ 4 x [ n -  1 ]+ *[n  -  2] + ^ t[n  -  3],

Example 4.7 Consider the series interconnection in Figure 4.12. The 
subsystems of the interconnected system are described as follows:

51 : yi [n] = 2x\  [/*] +4x\ [n -  1 ],

52 : y2 [n] = x 2 [ n - 2 ]  + ^ x 2 [n- '} ] .

What then is the relation between the input x[n] and output y[n] 
sequences of the interconnected system?
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Solution

>•[«] = yif/j] = .r2|n -  2] + .̂V2|w -  3)
tm-

= V| [n -  2J + i.vi [n -  3] 

= (2jti [n -  2] +4AT|[n-3]) + ^ (2 vi[/i - 3] + 4 * i [n - 4 ] )

= 2xi [m -  2] + 5jci (« -  3] + 2vi [« -  4]

= 2x[n -  2] + 5jc[w -  3] + 2x[n - 4].

Example 4.8 Consider the series interconnection in Figure 4.12. The 
subsystems of the interconnected system are described as follows:

51 : yj[n] = x \ [ n - 2 ] + ^ i [ n ~ 3 ]

52 : y 2 [n] = 2 x2 [n] + 4x2 [ n -  1).

What then is the relation between the input x[n) and output y[n] 
sequences of the interconnected system? Compare the result with the 
result of the previous example and discuss why.

Solution

y[n] = y 2 [n\ = 2x2 [n] +4x2[n -  1]

= 2yi[w} + 4yi[n -  1]

= 2(jc, [ n - 2] + ¿jc, [n-■ 3]) +'4(x', [h -  3f + [h -  4])

= 2x\\n  -  2\ + 5jci [n -  3] + 2x\ [n -  4]

= 2x[n -  2] + 5x[n -  3] + 2*[n -  4].
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The result is identical to the result of the previous example. The reason 
why we encounter the same result is because the two subsystems are 
LTI systems. Having a nonlinear or time-varying subsystem, we would 
face two different results for the two examples.

PROBLEMS

Problem 4.1 Show that a system described by the following differential 
equation is nonlinear:

Problem 4.2 Convince yourself that a system described by the following 
expression is time-invariant:

;y[n] = x 2 [n].

Problem 4.3 Which of the following differential equations represents 
linear and time-invariant systems? Choose one.

b. ^ p - * l y 2( l )=x ( t )

c.

Problem 4.4 Which of the following differential equations represents 
nonlinear and time-varying systems? Choose one.
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a.

b.

c.

d.

Problem 4.5 Consider an LTI system that has the input-output relation 
shown in the left panel below. Suppose one does an experiment with the 
following input function:

xi( t)  = S ( t -  l) + 5 ( f - 2 ) - < 5 ( f - 3 ) .

Sketch the output yi (r) one would get from the experiment.

3 ■ 3

2 j ■ A t )
2

i! <■<?), i--------- i
! 1

1

0

-2 -2

'3-2 0 2 4 6 8 10 ’3-2 0 2 4 6 8 10
t t

Problem 4 6  Consider an LTI system that has the input-output relation 
shown in the left panel below. Suppose one does an experiment with the 
following input function:

*2(0 = 6 (t -  1) -  S(t -  2) + 6 (t -  3).

d-y(t) dy(t) _ _ _ +JP(#)=jr(0

d2y(t) 
dt2

d2yU) 
dt2

d2y(t) 
~dtr

+ i.v2(/) =x(r)  

+ r2v(t) =x(r)

Sketch the output V2(f) one would get from the experiment.
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v( 11,
AO 

r---- \
1 1 .. 1 !-

' 3 - 2  0  2  4  6  8  1 0  ' 3 - 2  0  2  4  6  8  1 1

I I

Problem 4.7 Consider the following interconnected system:

The subsystems of the interconnected system are described as

51 : y iM  = * i [ n -  1],
52 : yi[n] = x 2 [ n -  1],
53 : y3[n] =X3[n-  1].

What is the relation between the input Jt[n] and output y[n] sequences of 
the interconnected system ?

Problem 4.8 Repeat Problem 4.7 with the following subsystems:

51 : yi[«] =JC i[n- 1],
52 : yi[n] =jc2[/i + 1],
53 : y3[«] =*3[h -  2].

Problem 4.9 Repeat Problem 4.7 with the following subsystems:

51 : y \ [n] = x \ [ n -  1] — j t i [« — 2],
52 : yi[n] = x 2[n -  I] - x 2[n -  2 \,
53 : V3[m] = Xi[n -  1] -Jf3[n -  2].
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Problem 4.10 Repeat Problem 4.7 with the following subsystems:

Si : .Vi [w] = .t| [/?] -V11/i I ].

Si : V2[”1 = -Vo[w| — -Y2[« -  I],
•S3 : V3 [n] = *3 [«I -  xj 1» -  11.
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Chapter 5

CONTINUOUS-TIME CONVOLUTION

We have argued that a system is a collection of devices that transforms input 
signals into output signals. The behavior of a system can be mathematically 
described either in the time domain or in the frequency domain. In Chapter
5, we introduce a technique called convolution, which is a basic tool 
for understanding systems in the time domain. A series of time domain 
approaches are possible, but we only concentrate on discussing convolution. 
Readers are encouraged to refer to Allen and Mills (2004) for a more 
comprehensive discussion about time domain approaches.

We first focus on the mathematical aspect of convolution and then learn 
how to apply it for assessing responses from linear time-invariant (LTI) 
systems. The reason we limit our discussion on LTI systems is twofold. 
First, no general procedures exist for non-LTI systems. Second, several 
physical systems can be modeled as LTI systems. Moreover, LTI systems 
can be analyzed in great detail because standard procedures are already 
available.

5.1 CONVOLUTION INTEGRAL

5.1.1 Introduction to Convolution Integral

The convolution Integral or superposition integral of two functions *(/) 
and h(t) is defined as

Note that the asterisk symbol (*) is widely used to denote convolution inte­
grals. Note also that the Greek letter r  is a popular choice for representing 
the dummy variable of the time integration. The integration in expression .
5.1 can be regarded as a process that has following steps:

1. Folding or taking mirror image of h ( r ) to obtain h ( - r ) ,

2. Choosing a value of t to calculate the convolution integral,

(5.1)
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3. Shifting h ( - r )  according to the value of t to obtain h(t  -  r),

4. Multiplying jc ( t )  and h(t  -  r),

5. Integrating jc ( t )  h(t  -  r)  over r  to evaluate the convolution for the 
specific value of t,

6. Repeating from step 2 to consider every possible t values.

Sketching h ( t  -  t ) is, among the above steps, the key to the convolution 
process.

To better substantiate the idea of the convolution integral, consider a 
simple case that one convolve the unit step function with itself:

Chapter 5. CONTINUOUS-TIME CONVOLUTION

y(t)
/ oo

u( t ) u(t  -  t ) dr .

OO
Figure 5.1 illustrates several intermediate steps necessary for the evalu­
ation of the above convolution integral. It is evident from the graphical

U(T) x m(-1 - r ) =  w(r)u( - l - r )
/

t  = - 1 1
.  1

t

------ ---------------------

V

------------------------------->

u{z) 

/ = 0 /

-> T

u ( -r )
V
1

=  u ( r ) u ( -r )

u (r)

u( r )  

/ = 2 '1

x « ( l- r)

x u{ 2 - t )

T

=  « ( r ) w ( l - r )
>

=  1  1

' t

1

> r 1 '  ‘ 1

=  u(r)u(2-r )
A
1 --------

->r

Figure 5.1: Graphical analysis for the evaluation of u( t ) *u( t )
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au(r)  x

/< 0  «1-----------

au(r)
A

t > 0  a ---------

h u ( t - T )  =  abu( z ) u ( t-r)
A  

h

I 0 0

h u ( t - T )  = a h u ( z ) u ( l - T )
A 

ab  —

-* r

o / o l

Figure 5.2: Graphical analysis for the evaluation of [a u(f)l * [bu{ t )]

interpretation that

y(-l)= f  m(t) m(-1 - t) dr = 0,
J  — oo

y(0) = f  u(t) u(-t) dr = 0,
J  — OO

y(l) = f  u(t)u{\ - t) dr = 1,
J — OO

y(2) = f  u(t) u(2 - t) dr = 2,
J —OO

and one can deduce that

u( t)*u(t )  = tu{t) = r(t). (5.2)

Lei us now repeat the above argument with a more general notation. 
Figure 5.2 exhibits that [a u(f)J * [b u(f)] = 0 for t < 0. For t > 0, on the 
other hand, the convolution becomes

[au(t)\  * [¿n(f)] = f abdr .
Jo

We thus establish the following expression:

[ a M ( i ) ]  *  [ b u ( t ) ]  =  If a f c r f r j  u( t ) .

The above expression is, in fact, very interesting because it implies that 
convolution between functions that are zero for t < 0 can be evaluated by 
only integrating between 0 and t. Consider two functions

x(t) = f ( t )  u(t) and h(t) = g( t)u(t ). (5.3)
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Convolution of the two functions then becomes

X ( t ) * h ( t ) =  f  f ( T ) u ( T ) g ( t - T ) u ( t - T ) d T
J —oo

-\i; f ( r ) g ( t  -  t ) dT «(f). (5.4)

Note that for 0 < r  < r, / ( r )  = x ( t )  and g( t  -  r)  = h(t  -  r). We can 
thus rewrite the above expression as

x( t )  * h(t) ■If*(r) h(t  -  t )  d r u(t).

Most physical experiments involve signals that are zero until the outset 
of those experiments. In other words, signals are frequently expressed in 
the form of expression 5.3, and, in such a case, the range of convolution 
integral reduces significantly.

Example 5.1 Derive x( t )  * h(t)  with the following two functions:

x( t )  = u(t),  

h(t )  = r( t )  = t u(t).

Solution

/ ( f )  = 1 and g( t )  =  t.

x(t) * h{t) f ( T ) g ( t - r )  d r “(' H I ( f - r )  dT-m;
=['l dr~L H  “(,)=[,2 - 1] "<,>=? “

« (0

(0.

Example 5.2 Derive x(f) * h(t)  with the following two functions: 

x( t )  = r( t )  = t u{ t ) ,

MO = «(f)-
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that

x(t )  * h( t )  = h(t) *x( t ) ,  (5.5)

Í  x ( t )  h{t  -  r )  d r  = Í  x( t  - t )  h ( r )  d r .  (5.6)
J  —00 J -oo

They also demonstrate that a convolution integral can be easier by making 
good choice about which one to fold and shift. It is generally a good idea to 
pause for a while before the calculation and investigate which one among 
x( t )  and h(t)  has a simpler form. It is, of course, better to fold and shift 
the simpler expression.

Example 5 J  Derive the convolution of the following two functions:

x( t )  =  e at u(t),

h( t )  = u(t),

for a  >  0.

Solution

/ ( * )  =  e at and g( t )  =  1.

x( t )  *h{ t )  =  j j T  f ( T )  g ( t  - T ) d r * > » [ £ ■ e qt d r u(t )

=  - ( 1  - e - a,)u( t ) .  
a
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Example 5.4 Derive Jt(f) * h( t )  with the following two functions:

x( t )  =  e 2' u ( - t ) ,  

h{ t )  =  u ( t -  3).

Solution

x ( t ) * h ( t ) =  f  x ( t ) h( t  -  t ) d r  =  f  e 2r u ( - t ) « ( /  -  3 -  t )  J t .
J - C O  J - C O

The integration necessitates one to do the following graphical analysis: 

«(-r) x u(t-  3 - r )  =  w (-r)u (/-3 -r)
A

/ -3 < 0

ro / - 3  0 1 - 3  0

«(-r) x « ( / - 3 - r ) « ( -r )« ( /-3 - r )

/ -3 > 0

r ro 0 f - 3 0

Therefore, for t  < 3,

x( t )  * h( t )  = f  3 e2r dT =  \  e 2('" 3), 
•/—00 ^

and for t  > 3,

f 0  1
* ( 0  * h(t)  =  /

•/—00

Combining the two cases, we write

* ( i)  * W )  =  2 e 2('" 3) “ 0  -  0  +  2 u ( t  ~  3 ) ‘
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5.1.2 Properties of Convolution Integral

We summarize several important properties of convolution integral as 
follows:

1. x( t )  * h{t)  = h(t)  *.v(/) (commutative)

2. x ( t ) * [ g ( t )  + h { t ) ] = x ( t ) * g ( t ) + x ( t ) * h i t )  (distributive)

3. x(t) * [#(r) * h(t)] = [jc(r) * # (/)| * h(t) (associative)

4. x( t )  * S( t )  = f x (t ) 6(t  -  t )  d r  = x(t )
J  —oo

5. x( t )  * u(t )  = f  x ( t ) u (1 -  r) d r  = f  x ( r ) d r
J —oo J  — oo

6. 6(t)  * S(t)  = S(t)

7. u ( t ) * u ( t )  = r(t)

Another important property of convolution integral is the width p rop­

erty (Figure 5.3). If the duration ofx(r) and h(t)  are Tx and 7*, respectively, 
then the duration of their convolution is Tx + Th.

x(t)

J L❖
T.

-*t

h(t) x(t)*h(t)
L ,

« - * — •— dr~
tl t.+ t .A , I T I  *

Figure 5.3: Width property of convolution integral

5.1.3 More Graphical Approaches

Example 5.5 Sketch x(t)  * h(t) with the following two functions: 

x{t) = u(t),
h(t) = 2 r(t) u(l  - t )  + 2r(2 -  t) u(t -  1).
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Solution

We first sketch x (t ) and h(r). 

*(r)
*

h( r)

- 1 0  1 2  3

A 
/  \  

/  \

- 1 0  1 2  3
-»r

Considering the complexity of h(t), we fold and shift .*(/) such that 

x(t) * h(t) = f  x(t  -  t ) h{r) dr.
J -CO

We then consider four different cases: t < 0, 0 < t < 1, 1 < t < 2, 
and t > 2.

x j t - r )

H
h ( r )

A

A  
i \ 

i \

- 1 / 0  1 2 3

h(r)

->T

h(r)
^  *, v MX(t-T) /  \

-------1 \---------Cl-------i -------->r

“A
- 1  O i l  2 3

A(r)
\

X(t-T)

-1 0 1 I 2 3
->r - 1 0  1 2 / 3 ->r

It is evident that for t < 0,

x{t  -  r )  h(r)  = 0, and x(t) * h(t) = 0. 

For 0 < t < 1,

x ( t - T ) h ( r )  =

0  ( r  <  0 ) ,

2T  (0 <  T < t ) ,

0  ( /  <  r ) .
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Example 5.6 Sketch x(t)  * h(t) with the following two functions:

x(t) = n ( t ) v ( 1 - / ) .

:s- II s: £ 1

Solution

85



Chapter 5. CONTINUOUS-TIME CONVOLUTION

We first write

x ( t ) * h ( t ) =  f x ( t ) h( t  -  t ) d r ,  
J —oo

and sketch x ( t ) and /i(r).

x (t ) h(T)

—i ■ i
- 1 0  1 2  3

~»r
- 1 0  1 2  3

->r

We then consider four different cases: l < 0, 0 < / < 1, 1 < / < 2, 
and 2 < t.

h(t-r) x ( t )
---------iII___ L.

h(l-T) x ( t )

- 1 / 0  1 2 3
-> r HE

- I  O i l  2 3

X(T) h(t-T)

i n
- 1  0 1 / 2  3

■»r

x (r)  h(t-r)

- 1 0  1 2 / 3
->T

It is evident that for t  < 0,

x (r) h( t  -  r )  = 0, and x( t )  * h( t )  = 0. 

For 0 < t  <  1,

X( T ) h ( t - T )  =

0  ( t  <  0),

1 (0 < r  < /),
0  ( t  < t ),

and

x( t )  * h( t ) = I "  dr  = t.
Jo
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For I < t <2,

0 (T < / - ! ) .  
x ( t ) h(t -  t ) = ■ 1 (/ -  I < T < I),

0 ( 1 < T).

and

dr  = 2 -  I.

And finally for 2 < t,

X(r) h(t -  t ) = 0 and x(t) * h(t) = 0.

Combining the four cases, we sketch the convolution result as follow.

Example S.7 Derive x(t) * h(t) with the following two functions:

x(t) = u(t) m(1 - t )  sin(^-i), 
h(t) = u( t)u(  1 -  t).

Solution

We first write

x ( t ) * h ( t ) =  f  x ( T ) h ( t  - T ) d r ,
J  —OO

and sketch jc(t) and /?(r).

x(i )*h(t)

-I 0
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X(T) h(t)

t \/ t L' '
- 1 0  1 2  3

~>T
- 1 0  1 2  3

->r

W e then consider four d ifferent cases: t < 0, 0 < / < 1, 1 < t < 2, 
and 2 < /.

h(t-r) x(r)
A  / \

/ \

- 1 / 0  1 2 3
->T

h( t - r )  x (r)

_ C i i .
- 1 0 / 1  2 3

- » r

* (r) h(t-r)

J l L _
- 1 0 1 / 2  3

->T

x(t ) h ( t - r )
• \/ t 't * _h_

-1 I 2 / 3 -s>r

It is evident tha t for / <  0,

jc ( t)  h( t  -  t ) =  0, and jc(/) * /i( /)  =  0. 

F orO  <  t  <  1,

0 (r < 0),
jc ( t )  h( t  -  r )  =  • sin (ff/) (0  <  r  < /),

0 (/ < r),

and

=  f ‘ sir 
Jo

sin (;r/)  d r  =
1 -  cos(w f)

For 1 <  / < 2,

x ( t ) h( t  -  t ) =

0  ( t < / -  1),

sin(;r/) (/ -  1 < r < 1),
0  ( 1 < T ) ,
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and

f '  ■ , j  co s(æ / -  n) -  co s(tt) l - c o s ( ^ i )
x(t) * h(t) = /  sin(/rr) d r  = ---------------------------= ----------------.

y,_i * ?r

And finally for 2 < /,

jc (r)/» (/-  r) = 0 and x( t )*h{t )  = 0.

Combining the four cases, we write the convolution result as follow:

Having discussed the mathematical aspect of convolution integral, we 
consider its significance for linear time-invariant (LTI) systems, which 
necessitate one to understand the concept of impulse response. The im­
pulse response h(t) is the response of an LTI system when the input is 
the unit impulsé function 5(f) (Figure 5.4). Impulse response may be 
analyzed by analytic study or experimental measurements. And once we 
know the impulse response of an LTI system, we may say we understand 
the system. The meaning of understanding the system is that with the 
impulse response, we can predict the response of the system to any input 
signals via the convolution of the input signal and impulse response.

For the proof of the above argument, recall the sifting property of the 
unit impulse function shown in expression 1-.6-. After changing notation» 
(t —» r, and to —» t), changing sign of the argument of the delta function, 
extending the range of integration, we can rewrite expression 1.6 as

x(t) * h(t) =
1 -  cos(/r/) 

n
u( t)u (2  - 1 ).

5.2 IMPULSE RESPONSE AND CONVOLUTION

S(t) —► LTI System

Figure 5.4: Concept of impulse response
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At)

Figure 5.5: Impulse response and convolution

The above expression means that any input function X(t) can be expressed 
in the form of convolution integral with the unit impulse function. And 
using the above expression as the input to an LTI system, we may express 
the output from the system as

y ( 0  = [  x ( r )h ( t  -  T) dT.
J  —oo

In other words, with an input function x ( t ), the output from an LTI system 
is given as

y ( t ) = x ( t ) * h ( t ) ,  (5.7)

where h(t) is the impulse response of the LTI system. Note that the linear 
and time-invariant nature of the system enables one to write expression 
5.7. Figure 5.5 summarizes the argument as a block diagram.

5.2.1 Impulse Response and BIBO Stability

We have studied in Chapter 4 that for a BIBO stable system, bounded 
(finite) input signals always lead to bounded (finite) output signals. The 
BIBO stability of a system can be manifested in terms of the impulse 
response of the system. Following conventional notations of an input 
signal x(t),  impulse response h(t), and output signal y(t), we write

|y(OI = !*(/) * *(01 = f  x(t  -  t ) h ( r )  d r \  < f  \x(t -  T ) \ \ h ( r ) \ d T .
J  —00 I J - oo

Assuming that the input signal is bounded:

|x ( f - r ) |  < K,

with a positive contant K, the magnitude of the output should satisfy the 
following expression:

\y(t )\< [  K\h(T)\dr  < K  f  |h{r)\dr.
J  — OO J -CO



The above expression implies that the output signal v(r) is bounded if the 
impulse response h( t )  satisfies the following condition:

FJ  -  ex

\h(t)\ dt < oo. (5.8)

In other words, a continuous-time system is BIBO stable if its impulse 
response is absolutely integrable.

5.2.2 Impulse Response and Causality

Utilizing the concept of the impulse response, one may argue that for 
a ca u sa l system , the impulse response should have no signal before the 
impulsive input at t = 0 such that

h(t)  = 0 (r < 0). (5.9)

For causal systems, calculating convolution can be a simpler task such that

y(t)  = x(t)  * h(t) = f  x ( t ) h(t -  t )  dr  = f  x ( T ) h ( t - T ) d T .
J - O O  J - O O

Incidentally, convolution integrals can be even simpler with an extra 
assumption that x ( t )  = 0 for f < 0. With that assumption, convolution 
integrals are expressed as

■11'y ( t ) = x ( t )  * h{i )  = /  x{T)  h(t  -  T) dT u(t ) .  (5.10)

Example 5.8 Consider the following impulse responses:

1. h(t )  =  e - 3, u ( t  -  3)

2. h{t)  = u( l )

3. h(t )  = e ' u ( - t )

4. h(t )  =  e 2' u(t  +  3)
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Determine the BIBO stability and causality of the systems each the 
above impulse responses represent.

Solution

1. Stable / Causal

2. Unstable / Causal

3. Stable / Noncausal

4. Unstable / Noncausal

5.2.3 Impulse Response of Interconnected Systems

x(t)

x(t)

x(t)

x(t)

Figure 5.6: Interconnected convolution
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Impulse response is a useful concept that can characterize intercon­
nected systems. For example, the impulse response of an interconnected 
system can be described by combining or convolving impulse responses 
of its constituent subsystems. Figure 5.6 shows a list of interconnected 
systems whose input-output relations are express as follows:

5.3 A STUDY ABOUT RC CIRCUIT

In Chapter 4, we have considered an RC circuit (Figure 4.2) and discussed 
that the input battery voltage x(t) and output capacitor voltage y(t)  are 
related by the following differential equation:

We have also discussed that the RC circuit is a good example of LTI 
systems. In this chapter, we consider the RC circuit again and study how 
the convolution integral works. The impulse response of the LTI system is

We will study in Chapter 10 that the above expression can be conveniently 
derived via frequency domain analysis. While staying within the time 
domain, on the other hand, it requires a more sophisticated mathematical 
approach to derive the impulse response. Readers may skip the derivation 
of expression 5.12 and focus on the working principle of the convolution 
integral.

5.3.1 DeriVation of the Impulse Response

We rewrite expression 5.11 as

>’i(r) =x(t)  * [*i(/> * M O ]. 

y 2(t) =x(t)  * [ M 0  + M 0 ] .  

y3(0  = x(t) * h \ (0  * [M O  + /13(f)],

y4(0 = *(0 * [h\(0 * MO + MO]-

R C ^ p - + y ( t ) = x { t ) .
a t

(5.11)

MO = 'IRC u(t). (5.12)

R C ^ ^ -  + h( t )=ô(t ) .  
at

(5.13)

93



The system must be causal such that

h(t) =g(t)u( t ) .

The differential equation thus becomes

RC u(t) + RCg(t)  ^  + g(f) u(t) = 5(r). 
at at

Applying expression 1.9, we rewrite the above expression as 

RC ^  «(0  + RCg(t)  S(t) + g(t) u(t) = <5(/).

And the sifting property of the impulse function (expression 1.7) yields

RC ^  u{t) + * C s(0 )  6 (t) + g(t) u(t) = 6 (t).

We now decompose the above expression into the following two equations: 

RCg(0)6(t)  = S(t),

and

R C ^ - u ( , )  + g( t)u(t ) = 0.

The first equation provides the following initial condition:

* (0) = RC'  
and the second equation becomes

*C^  + g(i)=°- 
It is well known that the above differential equation describes exponentially 
decaying phenomena and its solution has the following form: g(t) = aebl. 
Substituting the form into the above two equations, we identify that a = 
l /RC,  b = - l / R C ,  and

The final expression of h(t) thus becomes

h^  = j c e~,IRCu{t)'
It is evident from the above expression that the impulse response of the RC 
circuit suddenly increases at t = 0 and, from then on, exhibits exponential 
decrease.
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5.3.2 RC Circuit and Convolution Integral

Knowing the impulse response of the RC circuit, we can consider any 
input functions and derive the output functions via the convolution integral. 
Consider the following input function to the RC circuit:

x( t )  = u ( t ) u ( t o - t ) .

with /0 > 0. The output from the circuit is then expressed as

> '( 0  =  x( t )  * h(t) -f  J  -c x

- fJ  - o

jr(r) li(t  -  t )  (It

I
[w(r)H(r0 -  t))

Applying expression 5.4, we rewrite the above expression as

j ^ e ~ u' T)IRC u( l  - t ) dr .

,V(/)
= M f o uu° -

r )e - U- t)/RC dr u(t).

We now consider two different cases: t <  to and to <  t.  Note that for 
t  <  to, the step function u(to -  t ) is always 1 within the integration range:

u( to  - t )  =  1 (0 <  r < t).

For to < t,  on the other hand, the step function u(to -  r)  is not always 1 
within the integration range:

u(to -  r) =
[ 1 (0 < T  < (0)»
[0 (to < T < t).

For t < to, the output function thus becomes

= e~^RC -  1 u(t) = 1 -  e~'lRC 

and for to < t,

«(<)

U(0 :

y(t)
■ M C ■

d r u( t ) ,r /RC d r u(t)

-  e -'/RC \e ia/RC -  1 u( t ) .
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Combining the two cases, we finally write the expression of the output 
function from the RC circuit as

y (') = 1 —e -t/RC u(t) u(t0- t )  + e ,/RC u ( t - t 0). (5.14)

The above expression shows that forO < t < to, the output from the circuit 
increases with time, whereas, for t > to, the output exhibits exponential 
decrease as time goes on.

Figure 5.7 demonstrates how one may utilize expression 5.14 to eval­
uate different output signals from the RC circuit. The RC time constant, 
which is the multiplication of the resistance R and conductance C of the 
circuit, is 1 second. At first, the input battery is activated for 1 second 
(io = RC), and we observe that the output capacitor voltage y \ (t ) increases 
upto about 63% of the input voltage. The capacitor voltage exhibits ex­
ponential decrease after the disconnection of the input battery. Secondly, 
we consider activating the input battery for 5 seconds (to = 5RC). We 
observe that the output capacitor voltage y 2(t) increases upto about 99°7c 
of the input voltage. We also clearly observe that the capacitor voltage 
increases fast at the beginning but the rate of increase quickly gets slower 
as time goes on.

1.2

0.8

* l ( 0 A(0 yi(t) = Xi(t)*h(t)
1.2 1.2

-1 V = ls *C = ls
0.8

\
0.8

0. 4

0 V 0.4

0A.
0 2 4 6 8  10 0 2 4 6 8  10 0 2 4 6 8  10

t (s) t (s) t (s)
*,(/) m y2(t) = x2(t)*h(t)

t( s) /( s) i(s)

Figure 5.7: RC circuit and convolution integral
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PROBLEMS

Problem 5.1 Calculate the convolution of the following two functions:

x(t) = r(t). 
h(t) = r(t).

Problem 5.2 Calculate the convolution of the following two functions:

x(t)  = u(t). 

h(t) = t2u(t).

Problem 5 J  Calculate the convolution of the following two functions:

x(t) = COS(7Tt) u(t), 
h(t) = u(t).

Problem 5.4 Calculate the convolution of the following two functions:

x(t) = sin(n-i) u(t) u(2  - 1 ), 
hit) = u(r).

Problem 5.5 Sketch the convolution of the following two functions.

x(t) = u( t )u( 2 - t ) ,  
h(t) = « ( r )« (4 - r ) .

Problem 5.6 Sketch the convolution of the following two functions:

x(t) = u ( t -  1) m(5 -  t), 
h(t) = u ( t - 2 )u ( 6 - t ) .
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Problem 5.7 Consider an LTI system whose impulse response is 

h(t) = e~5' u (2  -  t).

Which of the following correctly describes the LTI system ? Choose one.

a. Causal and BIBO stable

b. Noncausal but BIBO stable

c. Causal but BIBO unstable

d. Noncausal and BIBO unstable

Problem 5.8 Consider an LTI system whose impulse response is 

h{t) = e~3' u(t + 2 ).

Which of the following correctly describes the LTI system ? Choose one.

a. Causal and BIBO stable

b. Noncausal but BIBO stable

c. Causal but BIBO unstable

d. Noncausal and BIBO unstable

Problem 5.9 Show that expression 5.12 does satisfy expression 5.13. 

Problem 5.10 Show that expression 5.14 is continuous at t = to.
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DISCRETE-TIME CONVOLUTION

Chapter 6

The concept of convolution integral has been discussed with respect to 
continuous-time systems. Similar concept exists with respect to discrete­
time systems. In Chapter 6, we first introduce the concept of convolution 
sum and then discuss its application for analyzing linear time-invariant 
(LTI) systems. We also introduce the concept of deconvolution and demon­
strate how to accomplish convolution / deconvolution via digital computers. 
The numerical work, which is based on a package called MATLAB, will 
soon demonstrate how efficient it is to use digital computer to perform 
convolution / deconvolution of not only discrete-time signals but also of 
continuous-time signals.

6.1 CONVOLUTION SUM

6.1.1 Introduction to Convolution Sum

The convolution sum or superposition sum of two sequences x[n] and 
h[n] is defined as

* h [ n ]  =  ^  -  It] . ( 6 .1 )
k=-oo

Note that the asterisk symbol (*) may represent both the continuous-time 
convolution and discrete-time convolution. Note also that the letter k is a 
popular choice for representing the dummy variable of the time summation. 
Similarly to convolution integral, the summation in expression 6.1 can be 
regarded as a process that has the following steps:

1. Folding or taking mirror image of h[k] to obtain h[~k],

2. Choosing a value of n to calculate the convolution sum,

3. Shifting according to the value of n to obtain h[n -  fc],

4. Multiplying x[ &] and h[n -  /:],
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5. Summing ;t[fc] h[n -  k] over k to evaluate the convolution for the 
specific value of n,

6 . Repeating from step 2 to consider every possible n values.

Sketching h[n -  k] is, of course, the key to the convolution process.

As the first example of the convolution sum, consider a simple case 
that one convolve the unit step sequence with itself:

oo

m[h] * m[h] =  ^  m[&]m[h -& ].
k ——oo

The summation result of the above expression may differ depending on 
the value of n. Figure 6.1 illustrates that «[«] *u[n\  = 0  for n < 0. On 
the other hand, the summation becomes

n
u[n] *u[n] = 2 ]

k = 0

for n > 0. We can thus establish the following expression:

u[n] * u[n] = ^  u[k] u[n -  k] = 1 1 u[n]
*=-<» U=o I

= (n + 1 ) u[ri\ = r[n + 1]. (6.2 )

The above expression now leads one to consider convolving two time 
sequences that are zero for n < 0 as follows:

x[n\ = f [n)u[n\  and h[n\ = g[n] u[n\.  *6.3)
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u[l
n c  0  1(

t]  x  u[n

’ T T T T r , T T T . ,
- k] =  u[k]u n - k ]

u[)
n>  0

>k „ •  « 
c] x  u[n

' T T T T r , T T T T '
- A]  _  u[k]u

' T T _ _ _ _ _ _ _ "
[ n - k ]

f T T , .
n K n

Figure 6.1: Graphical analysis for the evaluation of u[n\ * i/[w)
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Convolution of the two sequences then becomes

. x[n)*h[n]= ^  / [ * ]  « (* ]# [« -  k ] u [ n - k ]
k = - o o

= [ 2 / m / f [ n - * ] ) « W .  (6.4)
u=o I

Note that for 0 < k < n, / [ ¿ ]  = .v[A:| and #[/; -  k] = h[n -  A]. We can 
thus rewrite the above expression as

*[«] * h[n] = I E - 'M  "  * lj "I"]-

Expression 6.4 means that for signals that are zero until the outset of a 
physical experiment, the range of convolution sum reduces significantly.

Example 6.1 Derive jc[/i] * h[n] with the following two sequences:

x[n]=u[n],  
h[n] = r[n] = nu[n].

Hint: Refer to expression B.47.

Solution

f \ n ]  = 1 and g[n]=n.

x[n]*h[n]  = * ] |h |/i]  = Ị̂ (n -  Ắ:)Ị u[n]

u =0 k=0 I \ k=0 k=v 1

- i .  I . n(n + ì ) \  n(n + 1 )
=  I n  (/I +  1 ) --------- - j — I « [ « ]  =  —  2 — “ ["]•
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Example 6.2 Derivex[n] * h[n\ with the following two sequences:

x[«] = r[n] = nu[n],  
h[n] =u[n].

Solution

f [ n ] = n  and g[n] = 1 .

x[n]*h[n]  = = ( 2  *)«[»] 
1*=0 1 \k=0 1

■ ”2+

Examples 6.1 and 6.2 exemplify that convolution is commutative such 
that

x[n] * h[ri\ = h[n\ *x[n], (6.5)

oo oo
^  x[k] h[n - k ] =  ^  x[n -  *] h[k]. (6 .6 )

k= - o o  k= - o o

It is therefore desirable to fold and shift the one that has a simpler expres­
sion amongx[n] and h[n\.

Example 6 3  Derive x[n] * h[n] with the following two sequences:

x[n] = r[/j] = nu[n],  
h[n] = r[n] = nu[n].
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Hint: Refer to expression B.48.

Solution

f [ n \ = n  and ^ [ /1J = /1.

,v[w] * h[n] = Kl" ~ * ] )  « M  = ( g  * ( "  ~ * ) ) " [ « ]

= (n Z k ~ Z *2) =(" Zk ~ Z*2)
\  * = 0  k = 0  I  \  i = l  * = 1  I

I n(n+ 1 ) rt(n + l) (2 n + 1) \
=  V  2 ---------------------------------------------- 6 ------------------------ ) “

w

« ( « +  l ) ( n  ~  1 )  w [ n |

Example 6.4 Derive *[/1] * h[n\ with the following two sequences:

jr[n] = a" u[n], 
h[n] =u[n],

for a * 1. Hint: R6fer to expression B.51.

Solution

f [n \  = an and g[n] = 1 . 

x[n] * h[n] = | Z ^ * ]  "  *]J Hlv].= ( j X )  ^

~n+1 1

= ( l + a  + a +  - + a") u[n] = ---------- “ [” ]•
a -  1
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Example 6.5 Derive jc[n] * h[n] with the following two sequences:

x[n] = (0.7)" u[n\, 
h[n] = (0 .2 )" w[n].

Solution

/ N  = (0.7)n and g[n] = (0.2)".

= |g (0 .7 )* (0 .2 )"-* J« [ii]

= (0.2)" |£ (0 .7 /0 .2 )* J « M  

(0.7/0.2)n+1 -  1
- (02) “ oT/oi— u[n]

(0.7)n+I -  (0.2)"+l f ,
* ----------o l ----------“ w

= 2{(0.7)n+1 -  (0.2)"+1> n[n]

6.1.2 Properties of Convolution Sum

We summarize several important properties of convolution sum as follows:

1 . x[n] * h[n\ = h[n\ * x[n] (commutative)

2 . x[n] * (g[n] + A[h]) = x[ri\ * g[w] + x[n] * h[n] (distributive)

3. x[n] * (#[«] * h[n]) = (jc[w] * g[«]) * h[n] (associative)
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oo

4. .V[/iJ * ¿[/?] = ^  jc|fc] d[/i -  k | = .v| n |
k=-00

00 n

5. , v [ « ] * m [ / ? ] =  y  jr[Ar] u[n -  ,v[Jt]
k = -o o  k = - o c

6. ¿[rt] * <5[n] = ¿[«]

7. u[n\ * u[n] = r[n + 1 ]

Another important property of convolution sum is the width property 
(Figure 6.2). If jc[/i] and h[n] are /V^-points and A^-points sequences, re­
spectively, then the convolution of the two sequences yields (Nx + N / , -  1)- 
points sequence.

x[n] h [n ]

...1f t ........-
1

T T  T

N.

T i

x[n]*h[n]

t! 11
il

NI + Nh- l

Figure 6.2: Width property of convolution sum

We finally introduce another useful property of convolution sum. The 
shifting property of convolution sum states that having the following 
convolution relation;

x[n\*h[n\  = y [n ],

one can associate the time shifting pattern of the individual sequences of 
the above expression as

x[n -  /11] * h[n -  «2] = y[n -  n\ - « 2]- (6-7)

In other words, once we know a convolution relationship between three 
sequences, we can freely time shift any of them and predict its influence. 
Applying the shifting property to the following convolution relation:

¿[n] * <5[n] = <J[u],
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we derive that

8 [n -  «1 ] * 6 [n -  «2] = ¿>[n -  n\ -  «2]. (6.8)

Chapter 6. DISCRETE-TIME CONVOLUTION

Example 6.6 Derive jc[n] * h[n] with the following two sequences:

*["] = <S[n] + 2<S[n - 1] -  ¿ [n -3 ] , 
h[n] = 2<5[n+l] + 2 6 [ n - 1].

Solution

x[n] * h[n] = (5[n] + 26[n- \ ]  -  d [n -3 ]) * (2<J[n+l] + 2c5[«— 1 ])

= 28[n\ * 5[/i+l] + 28[n\ * 6 [ n - 1 ]
+ 4 5 [/i-l]  * ¿[n+1] + 4<5[n-l] *¿[/1-1]
-  2S[n-3\ * <5[n+l] -  2S[n-3] * 6 [ n - 1]

= 2<J[«+1] +2<5[n-l] +4(5[n] + 4<5[/i-2]
-  26]n-2] -  2<J[n-4]

= 2S[n+l] +46[n] +2<S[/i-l] + 2S[n-2]  -  2<5[n-4j

6.1.3 Convolution Sum and Polynomial Multiplication

While solving Example 6 .6, one might have noticed that convolving two 
delta sequences is a process similar to multiplying terms of polynomials 
such that

6 [n-n\] * <5[n -« 2] = S [n -n \ - r 12] <==> z~n' = z- "1-"2.

The convolution sum has, in fact, a strong connection to polynomial mul­
tiplication. Recalling the sifting property of the unit impulse sequence 
(expression 1.18), we express two time sequences x[n\ and h[n] as

A'[/i] = ^  x[&] ¿[w -  &] and /i[n] = ^  /i[fc] 6[n -  A'],
k = - o o k = -o o
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and, based on the above expressions, we also implement the following two 
polynomials:

X( z ) =  2  x[k]z~k and H(z)=  £  h[ k ] Z- k .
k=-oo k=-co

The convolution of the two time sequences ,r[w] * h[n\ can be, then, 
inferred from the multiplication of the two polynomials such that

CO

y[n] = x[n) * h[n] <=> Y(z) = X(z) H(z)  = £  v W  *"*• (6-9)
*=-oo

In other words, if we convert time sequences, x[n] and h[n], to polyno­
mials of z (i.e., X(z)  and H(z))  and multiply the two polynomials, the 
coefficients of the multiplication result (i.e., K(z) = X(z) H(z))  can be 
readily converted back to a time sequence that exactly matches with the 
convolution sum of the original time sequences: y[n\ = x[n] * h[n].

Example 6.7 Use the polynomial multiplication approach and derive 
y[n] = x[n] * fc[n] with the following two sequences:

jc[/i] = <J[n] + 26[n -  1] -  6 [n -  3], 
h[n] = 2<J[n + 1 ] + 28[n -  1 ].

Solution

X(z) = l + 2 z- ' - z - \
H(z)  = 2z + 2z_I.

K(z) = X(z)  H(z)  = (1 + 2z~l -  z ' 3)(2z + 2z-1)
= (2z + 4 -  2z~2) + (2z_1 + 4z-2  -  2z"4)

= 2z + 4+-2z- - + 2 z~2 -  2z-4.

y[n] = 2S[n + 1] + 4 8 [n] + 26 [n -  1] + 2 8 [n -  2] -  2S[n - 4 ] .
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Example 6.8 Consider time sequences x[n\ and _y[«] in Example 
6.7. Use the polynomial multiplication approach and derive 
y[n] = x[n -  2 ] * h[n -  1].

Solution

Y(z) = [z-2  X(z)] [z_l H(z)] = z~3 X(z) H(z)
= 2z~2 + 4 -3  + 2z~4 + 2z~5 -  2z"1.

y[/i] = 26 [n -  2] + 4<5[/i -  3] + 2S[n -  4] + 26 [n -  5] -  26[n -  7].

Examples 6.7 and 6.8 show that polynomial multiplication can be a 
convenient approach of convolution sum. Note that while transforming 
a time sequence into the polynomial form, it is customary to denote the 
name of the polynomial with the uppercase letter that corresponds to the 
name of the sequence. Note also that transforming a time sequence into a 
polynomial form is, in fact, strongly connected to a technique called the 
z-Transform. More about the technique will be presented in Chapter 13.

6 2  DECONVOLUTION

We have observed that the convolution sum is a process that can be cloned 
by polynomial multiplication. A question that naturally follows is whether 
there exists a process that may be cloned by polynomial division. In fact, 
there exists a process called deconvolution that polynomial division do 
clone.

Suppose one knows x[n] and y  [n] of the following convolution rela­
tion:

y[n] =x[n] *h[n ].

Assessing h[n\ from the above relation is then the deconvolution process. 
Note, however, that deconvolution is only meaningful for discrete-time 
signals, and no direct mathematical definition exists for continuous-time 
signals.
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Example 6.9 Consider the following time sequences:

.*[«] = <5[n] + 2S[n -  1] -  6 [n -  3],
y[n] = 26[n + 1] + 4S[n] + 2<5[/? -  11 + 2S\n -  2] -  2S[n -  4],

and derive h[n\  that satisfies the following convolution relation: 
> [n] =x[n] * h[n].

Solution

X ( z )  =  1 + 2 z~' - z ~ \

r (z )  = 2z + 4 + 2z_l + 2z”2 -  2 z '4,
H(z)  = Y(z)/X(z) .

2 z + 2  z 1

2z + 4 + 2z-' +2z'2 -2z~*
2z  +  4  - 2 z ' 2

2z~' + 4 z ‘2 - 2 z *
2 z - ' + 4 z ' 2 -2z~*

0

H{z)  = 2 z  + 2z l ,
h[n] = 2.6[n + 1] + 2S[n -  1.].

6.3 IMPULSE RESPONSE AND CONVOLUTION

We have seeh that deconvolution is the process of obtaining one o f  the 
constituent sequences in the convolution sum. Deconvolution is also 
known as inverse filtering of systetn' identification, because it is usually 
used for determining the impulse response of a linear time-invariant (LTI) 
system. The concept of the impulse response in discrete-time systems 
is basically identical to its counterpart in continuous-time systems; the 
impulse response h[n] is the response of a discrete-time LTI system when
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S[n] h[n]

Figure 6.3: Concept of impulse response

the input to the system is the unit impulse sequence ¿[/i].

We have studied in Chapter 5 that the sifting property of the unit 
impulse function 6 (t) enables one to associate the output y(t) from an 
LTI system with the convolution integral of the input x(t)  and impulse 
response h(t) of the LTI system. Same principle applies to discrete-time 
systems. The sifting property of the unit impulse sequence ¿[n] states that 
any input sequence can be expressed in the form of convolution sum 
with the impulse sequence:

oo
x[n] = Y j

* = - oo

Upon taking the above expression as the input sequence, the linear and 
time-invariant nature of a discrete-time system yields the following output 
sequence:

OO

yl«] = Y j h [ " " * ] •
*=-00

In other words, the convolution sum between the input sequence x[n\ 
and impulse response h[n] yields the following output y[n] from the LTI 
system:

y[n] = Jt[n] * h[n\. (6.10 )

Example 6.10 Consider a discrete-time LTI system that is character­
ized by the following impulse response:

h[n\  = 8 [n -  1] + S[n -  2] -  6 [n -  3] + ¿[« -  4] -  6 [n -  5].

Assume also the following input:

.v[n] = ¿ [n ] + 6 [n -  1] -  26[n -  2].
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Do not use the convolution sum. only rely om the liner time-invariant 
nature of the system, and derive the output y |/;] from the system.

Solution

We decompose the input sequence into the combination of 
three impulse sequences as

,t| [n] = 5[n], X2 [n] = -  1], and .̂ 3{w] = -26[n  -  2].

Linear time-invariant nature of the system guarantees that each of the 
impulse sequences yields output sequences as follows:

■* y M
' T T T•  •  •  <>—1—1—1—1—|—•  •  •  >n

-1 r r

*l[»] / ' ^ — > y t M  '
, . ' T T  T .
[ - . 1  i

Xj[/l] r 1  ‘
— ► y3[«]

m ’U
-2 J i  1

The input x[n] should thus accompany the following output y [«]: 

x[n]
id

•  •
y[n] t  2

IT

-3#

The sequence v[n] in Example 6 .10 can be also derived by the poly-
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nomial multiplcation approach as follows:

X(z) = 1 + z_l -  2z-2,
H(z) = z_1 + z-2 -  z-3 + z~4 -  z~5,
Y(z) = X(z)H(z)

= z~l + 2z-2  -  2z-3  -  2z-4  + 2z' 5 -  3z~6 + 2z-7,

y[w] = 6 [n -  1] + 26[n -  2] -  2<S[n -  3] -  2S[n -  4]
+ 2<5[n -  5] -  38[n -  6] + 26[n -  7].

Example 6 .10 thus demonstrates that the convolution sum of an input .v [n] 
and the impulse response of a system h[n \  is indeed the output from the 
LTI system.

6.3.1 Impulse Response and BIBO Stability

We have discussed, in Chapter 5, the BIBO stability of continuous-time 
systems. The BIBO stability is also defined in discrete-time systems; for a 
BIBO stable system, bounded (finite) input signals always lead to bounded 
(finite) output signals. The BIBO stability of a system is expressed in 
terms of the impulse response of the system as

00 oo

|y[«]| = ! * [ « ] * /> M I=  £  * [ » » - * ] * [ * ]  ^  2  l * [ « - * ] | I M * ] | .
k= -o o  (k=-oo

Assuming that the input signal is bounded:

|x [ n - * ] | < K,

with a positive contant K,  the magnitude of the output should satisfy the 
following expression:

OO OO

|y [* ] |<  Y j K \ h [ k ] \ < K  ^  |A[*]|.
k= - o o  k=-oo

The above expression means that a discrete-time system is BIBO stable if 
its impulse response is absolutely summable such that

OO

n=-oon=-oo
< oo. (6.1 1)
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6.3.2 Impulse Response and Causality

The concept of the impulse response enables one to describe the causality 
of a discrete-time system as

h[n\ = 0 (n < 0). (6 . 1 2 )

In other words, a causal system is one whose impulse response has no 
signal before the impulsive input at n = 0. For causal systems, calculating 
convolution can be a simpler task such that

CO

y[n] =x[n] *h[n)  = ^  x[k\ h[n -  k]
k=-cv

n  oo

= E  h n̂ ~ k ^ + Y j * 1*1 h n̂ ~ k 1
k - - o o  k=n+\

n

= E  * [ k ] h [ * - k ] .
*=-00

Employing an extra assumption that x[n] -  0 for n < 0, the convolution 
sum can be expressed in a even simpler form as

>[«] =x[n]*h[n]  = j «[«]• (6.13)

Example 6.11 Determine the BIBO stability and causality of the sys­
tems that each the following impulse responses represent.

1. h[n\ = 0.5n w [n -2 ]

2 . h[n] = u[n\

3. h[n] = 2nu [ 2 - n ]

4. h [ n] =2nu[n + 4]

Solution

I. Stable/ Causal
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2. Unstable / Causal

3. Stable / Noncausal

4. Unstable / Noncausal

6.3.3 Impulse Response of Interconnected Systems

x[n]

x[»]

Figure 6.4: Interconnected convolution

Utilizing the concept of impulse response, we can describe characteris­
tics of an interconnected system. Figure 6.4 shows a list of interconnected
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systems whose input-output relations are expressed as follows:

>'i[rt] = *[«] *{h\[n] *li2 \n}).

V2 Í«] = * M  * (h\[n] + /i2 [»f|).

>’3[«] =A-[n] * h\[n] * (/j:Di] + *3[«]). 

y4[n] = *[n] * (/ill«] * h2 [n] +hĩ[n]).

Example 6.12 Consider two subsystems that are described as

h\ [n] = 3ổ[n -  I ],
h2 [n] = 2ỏ[n -  2] + ổ[n -  3].

Suppose one uses the following input sequence:

x[rt] = ổ[rt] -  ô[n -  1],

and performs two experiments: the first with the series intercon­
nection of the two subsystems, and the second with the parallel 
interconnection. What then are the output sequences from the two 
experiments? Denote the output from the first experiment as yi [n] 
and the output from the second as jy2 [«] -

Solution

h\ [rt] * hi[ri\ = 3<5[n -  1] * (2S[n - 2 ]  + 6 [n  -  3])
= 6ỗ[n -  3] + 3S[n -  4],

h \ [n] + h2 [n] = 3S[n -  1] + 2ỏ[n -  2] + ỗ[n -  3].

yi[n] = x[n] * h2 [n])
= (<5[n] -  Ô[n -  1]) * (6Ổ[« -  3] + 3ô[n -  4]),
= 6<5[n -  3] -  36[n -  4] -  30[n -  5],

y2 [n] *jr[n]-*-(Ai[n] +A2W )
= (ổ[«] -  6 [n -  1]) * (3ổ[n -  1] +2ố[n -  2] + ô[n -  3]),
= 3Ổ[/Í -  1] -  ổ[n -  2] -  ô[n -  3] -  ô[n -  4],
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6.4 NUMERICAL EXERCISE

We have dealt with the convolution sum of discrete-time sequences that 
are of infinite length but are analytically describable (Examples 6.1 - 6.5). 
We have also considered discrete-time sequences that are of finite length 
(Examples 6.6 - 6.8). The length of sequences has been limited so that one 
can manage algebraically. It is obvious that as the length of time sequences 
gets longer, we are quickly forced to use digital computers.

There are plenty of numerical packages that enable one to manage data 
sets of considerable size. Among them, MATLAB is the one that attract 
more and more scientists and engineers (Chaparro and Akan 2019; Karris 
2008). We use MATLAB as the mean of introducing numerical works 
relevant to signal analysis. Those who are not familiar with MATLAB 
are recommended to review the basic usage of the package and essential 
grammar of MATLAB script (Hahn and Valentine 2019; Moore 2014).

6.4.1 Discrete-time Signals

The general expression of convolution sum is

In principle, it is impossible to calculate the above expression via a digital 
computer because of the infinite summation range of the convolution sum. 
We thus only consider signals that are of finite length and zero for n < 0, 
and we express the convolution sum as

It is common to define time sequences via arrays in MATLAB. Con­
sider the following script.

x n  =  [ 1  1  - 2 ]  ;

The script defines an array that corresponds to the following expression:

OO

y[n]=x[n]*h[n]  = £  x [ k ] h [ n - k ] .
k=-OO

x[n] = ¿[n] + ô[n -  1 ] -  2ô[n -  2 ].
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Note, however, that array indexing in MATLAB starts from 1 instead of 0. 
The first element of the array is thus referred to as xn ( 1 ) within MATLAB, 
while the first nonzero value of .v[//] occurs at n = 0. Consider also the 
following script.

hn = [0 1 1 - 1  1 - 1 ] ;

The script defines an array that corresponds to the following expression:

h[n\ = S[n -  1] + 6 [n -  2] -  6 [n -  3] + ¿[ /1  -  4] -  5[n -  5].

Note that the first nonzero value of /i[w] does not occur at n = 0, and, for 
the generation of an array that corresponds to h[n], one has to manually 
assign the value of the first element of the array as 0 .

Taking good care of indexing, one should find it is straightforward 
to calculate convolution and deconvolution via the following MATLAB 
commands:

yn = conv(xn.hn); 
hn = deconv(yn .xn);

Example 6.13 Type the following MATLAB script and run it. Check 
whether your run result satisfies the width property of discrete-time 
convolution (Figure 6.2).

clear;
xn = [1  1  - 2] ; 
hn = [0 1  1 - 1  1 - 1 ] ;  
yn = conv(xn .hn ); 
nx = 0 : le n g th (x n ) - l ;  
nh = 0 : le n g th (h n ) - l ;  
ny = 0 : le n g th (y n )- l;

f ig u r e ( i ) ;  
s u b p lo t(3 ,1 ,1 ) ;
s te m (n x ,x n ,’F i l l e d ’ , ’L inew idth’ ,1 .5 ) ;  
y l a b e l ( ’x[n] ’ ) ;
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set(get(gca,’ylabel’),’rotation',0 ) ; 
axis([0 10 -3 3]); 
subplot(3,1,2);
stem(nh,hn,’Filled’,’Linewidth’,1.5); 
ylabel(’h[n]’);
set(get(gca,’ylabel’),’rotation’,0); 
axis([0 10 -3 3]); 
subplot(3,1,3);
stem(ny,yn,’Filled’,’Linewidth’,1.5); 
xlabel(’n ’); 
ylabel(’y[n]’);
set(get(gca,’ylabel’),’rotation’,0); 
axis([0 10 -3 3]);

Solution

2

x[«] 0 
-2

1 2 3 4 5 6 7 8 9  10

h[n] oi*- t y
-2  ■

0 1 2 3 4 5 6 7 8 9  10

y[n] 01H
-2  ■

0 1 2 3 4 5 6 7 8 9  10
n

N x = 3, Nh  = 5, and N y = N x + Nh -  1 = 7. The width property is 
thus satisfied.
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Example 6.14 Type the following MATLAB script and run it.

clear;
xn = [1 1 -2];
yn = [0 1 2 -2 -2 2 -3 2];
hn = deconv(yn.xn);
nx = 0:length(xn)-l;
ny = 0:length(yn)-l;
nh = 0:length(hn)-l;

figure(2); 
subplot(3,1,1);
stem(nx,xn,’Filled’,’Linewidth’,1.5); 
ylabel(’x[n]’);
set(get(gca,’ylabel’),’rotation’, 0 ) ; 
axis([0 10 -3 3]); 
subplot(3,1,2);
stem(ny,yn,’Filled’,’Linewidth’,1.5); 
ylabel(’y[n] ’);
set(get(gca,’ylabel’),’rotation’,0); 
axis([0 10 -3 3]); 
subplot(3,1,3);
stem(nh,hn,’Filled’,’Linewidth’,1.5);
xlabel(’n ’);
ylabel(’h[n] ’);
set(get(gca,’ylabel’),’rotation’,0); 
axis([0 10 -3 3]);

Solution

2

x[n] o
■2

0 10
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y[n] w»— £■
-2

0 2 3 4 5 7 8 9 10

2

-2

0 1 2 3 4 5 6 7 8 9  10
n

6.4.2 Continuous-time Signals

Reading the title that we are doing convolution integral via a digital com­
puter, one might have misunderstood that we are trying to derive the 
analytic expression of a convolution integral result. No, we do not mean 
that. Instead of the analytic expression, we are trying to get a numerical 
data set that describes the convolution integral result.

The general expression of convolution integral is

In principle, it is impossible to calculate the above expression via a digital 
computer because of the integration range of the convolution integral. We 
thus only consider signals that are of finite length and zero for t < 0, and 
we express the convolution integral as

We then discretize x(t)  and h(t) with a uniform discretization interval At 
and approximate the above integral as

y(t) = x( t )  * h(t) = x (t ) h ( t - T ) d T  u(t).

y(nAt) « A t ^ ^ x ( k A t ) h ( n A t - k A t )  u(nAt). 
k=0
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The above expression can be, finally, transformed to an expression that 
only involves discrete-time sequences as follows:

Expression 6.14 implies that to get a sequence that correctly describes the 
convolution integral result, one should multiply the discretization interval 
At to the convolution sum of two sequences, which, via the discretization, 
describe two continuous-time functions.

Example 6.15 Type the following MATLAB script and run it. Com­
pare your run result with Figure 5.7.

xt = zeros(1,length(ta)); 
for id = l:length(ta) 

if (ta(id) < 5.0) 
xt(id) = 1.0;

end
end
ht = exp(-ta);
yc * dt*conv(xt,ht) ; '/, Don’t forget to MULTIPLY dt
yt = yc(l:length(ta));

figure(3);
subplot(3,1,1);
plot(ta,xt,’Linewidth’,1.5);
axis([0 tf 0 1.2]);
ylabel(’x(t)’);
set(get(gca,'ylabel’),’rotation’,0); 
subplot(3,1,2); 
plot(ta,ht,’Linewidth’,1.5); 
axis([0 tf 0 1.2]);

v[a?] = A/ jc[fc] h[n -  fc] I «[n] = At (,v[n] * A[n]). (6.14)

clear; 
dt = 0.01; 
tf = 10.0; 
ta = 0:dt:tf;

'/. Discretization interval 
'/, Maximum time range 
'/, Time axis
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ylabel(’h(t)’);
set(get(gca,’ylabel’),’rotation’, 0 ) ;
subplot(3,1,3);
plot(ta,yt,’Linewidth’,1.5);
axis([0 tf 0 1.2]);
xlabel(’t’);
ylabel(’y(t)’);
set(get(gca,’ylabel’),’rotation’, 0 ) ;  

Solution

1

X (l)  0. 5

0 1 2 3 4 5 6 7 8 9 10

1

h (t)  0. 5
V ______

°( 1 2 3 4 5 6 7 8 9 10

1

m  °-5
/ • " " " A ________________

° 0  1 2 3 4 5 6 7 8 9  10

t

Example 6 . IS demonstrates that continuous-time convolution can 
be approximated by discrete-time convolution. The expressions Gf the 
continuous-time signals in Example 6.IS are

x(t) = u(t) u(5 -  t), 
h(t) = e~'u(t),

and we are presenting their convolution integral result without any analytic 
calculation.
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We have argued that for continuous-time signals, there is no direct 
mathematical way of defining deconvolution. But. with the help of digital 
computer, we are able to describe, at least numerically, the deconvolution 
of two continuous-time signals. Consider, for example, the following 
continuous-time signals:

x (/) = u ( t ) u (5 -  t),

y ( t ) = [1 -  e~'] u(t) h(5 -  t) +e~' [e5 -  1] u{t  -  5).

There is no analytic method of deriving h(t) that satisfies

Example 6.16, however, demonstrates that one can numerically describe 
the continuous-time signal h(t).

Example 6.16 Type the following MATLAB script and run it.

x t = z e ro s ( 1 , l e n g th ( t 1 ) ) ;  
f o r  id  = l : l e n g t h ( t l )  

i f  ( t l ( i d )  < 5 .0 ) 
x t ( id )  = 1 . 0 ;

end
end
yt = zeros(1,length(t2)); 
for id = l:length(t2) 

if (t2(id) <5.0)
yt(id) = l-exp(-t2(id));

else
yt(id) = exp(-t2(id))*(exp(5)-l);

end
end

y(t) = x(t) * h(t).

c lea r;  
dt = 0.01; 
tf = 10.0; 
tl = 0:dt:tf; 
t2 = 0:dt:2*tf;

*/, Discretization interval 
'/, Maximum time range 
*/, Time axis for xt and ht 
*/. Time axis for yt
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ht = deconv(yt,xt)/dt; '/, Be careful to DIVIDE with dt

figure(4);
subplot(3,1,1);
plot(tl,xt,’Linewidth’,1.5);
axis([0 tf 0 1.2]);
ylabel(’x(t)’);
set(get(gca,’ylabel’),’rotation’,0);
subplot(3,1,2);
plot(t2,yt,’Linewidth’,1.5);
axis([0 tf 0 1.2]);
ylabel(’y(t)’);
set(get(gca,’ylabel’),’rotation’,0);
subplot(3,1,3);
plot(tl,ht,’Linewidth’,1.5);
axis([0 tf 0 1.2]);
xlabel(’t ’);
ylabel(’h(t)’);
set(get(gca,’ylabel’),’rotation’,0);

Solution

X (t)  0. 5

0 ----- 1----- 1----- .----- ■-----------1----- i----- 1----- 1-----
0 1 2 3 4 5 6 7 8 9  10
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PROBLEMS

Problem 6.1 Calculate the convolution of the following two sequences:

.Y |  /71 =  I / [ h | .

/j[/i| = tr  u[nj.

Problem 6.2 Calculate the convolution of the following two sequences:

=3"w[n], 
h[n] = 2 "«[«]•

Problem 6.3 Calculate the convolution of the following two sequences:

jc[/i] = a"u[n],
/i[n] = b"u[n],

for a * b.

Problem 6.4 Calculate the convolution of the following two sequences:

x[/i] = c"u[n], 
h[n] =

Problem 6.5 Calculate the convolution of the following two sequences:

x[n\ = d'[n] -  S[n -  1],
h[n\ = <5[n] + 36 [n -  1] + 26 [n -  3],

Problem 6.6 Calculate the convolution of the foHowing two sequences:

jc[ai] = <$[«] -  3<5[n -  1] + 26[n -  3], 
h[n] = <5[n] + 6 [n -  1 ],
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Problem 6.7 Find the impulse response h [n] of a system that yields the 
following input / output sequences:

jc[/i] = 6 [n] + 28[n -  2 ],
y[n] = 26[n\ -  38[n -  1] +4<5[n -  2] -  68 [n -  3].

Problem 6.8 Find the impulse response h [n] of a system that yields the 
following input / output sequences:

x [n] = ¿[w] -  2 6 [n -  2 ],

y[n] = 2 8[n -  1] + 8 [n -  2] -  55[n -  3] -  6 [n -  4]
+ 2S[n -  5] -  28[n -  6].

Problem 6.9 Consider an interconnected system shown below. Describe 
the relationship between x[«] and y[n] through convolution notation.

Problem 6.10 Sketch the block diagram that represents the following 
input-output relation:

?[«] =•*[«] * + h2 [n\) * h3 [n].
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CONCEPT OF FOURIER SERIES

Chapter 7

In Chapters 5 and 6, we have discussed the time domain technique called 
convolution. For the rest of this study, we primarily focus on frequency 
domain techniques. The first topic in the frequency domain must be 
Fourier series, because it is the foundation on which we build the house 
of Fourier analysis. Noticing lost in the middle of discussing Fourier 
analysis, readers need to come back to Fourier series and ponder again 
its significance. Those who are not yet familiar with handling complex 
numbers are also advised to review the basic theory of complex numbers 
(Appendix C) ahead of discussing the Fourier series.

7.1 INTRODUCTION TO FOURIER SERIES

A good way of substantiating an unfamiliar concept is to experience some­
thing tangible about the concept. We thus first introduce an example 
and then discuss what Fourier series is all about. Readers are strongly 
recommended to do the example ahead of anything else.

Example 7.1 Type the following MATLAB script and run it. Try dif­
ferent values of ns (for example, ns = 0, 2, 4 , 10, 100, 1000) 
and observe their results.

clear;
ns = 1 0 0 ;
d t = 0 .0 1 ;
t f  = 2 .0 0 ;
t a  = - t f : d t : t f ;
n t = le n g th ( ta ) ;

fs  = 0 .5 * o n e s ( l ,n t ) ; 
f c r  id  = 1 :ns

i f  m od(id,4) == 1
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fs  = f s  + 2 . 0* c o s ( id * p i* ta ) / ( id * p i ) ; 
f s  = f s  + 2 . 0* s in ( id * p i* ta ) / ( id * p i ) ; 

e l s e i f  m od(id,4) == 3
f s  = f s  -  2 . O * c o s ( id * p i* ta ) /( id * p i) ; 
f s  = f s  + 2 . 0* s in ( id * p i* ta ) / ( id * p i ) ;

end
end

f i g u r e ( l ) ;
p l o t ( t a , f s , ’L inew idth’ ,1 .5 ) ;
x l a b e l ( ’t ’) ;
a x i s ( [ - t f  t f  - 1  2 ] ) ;

Solution

t

Example 7.1 shows that one can add a lot of trigonometric functions 
to build up a periodic function shown in Figure 7.1. It also shows that 
near the discontinuous jumps of Figure 7.1, graphs in Example 7.1 may 
exhibit overshot (gray background), which is called the Gibbs phenomenon.
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Figure 7.1: A periodic function

While keeping the d t value as 0.01, one can remove the overshot with 
a larger value of ns, such as 1000. The type of periodic functions that 
trigonometric functions may synthesize are not limited to the one shown 
in Figure 7.1. To the contrary, trigonometric functions can synthesize a 
variety of different periodic functions. In other words, a lot of periodic 
functions can be expressed in terms of trigonometric functions. This 
process of decomposing a periodic signal into a series of trigonometric 
functions is known as the Fourier series expansion. The Fourier series 
expansion is not possible for every periodic function. A periodic function 
x (t) can be expanded as a Fourier series only if it fulfills the Dirichlet 
conditions summarized below (Oppenheim and Willsky, 1997).

1 . jc(i) must be absolutely integrable over a period.

2 . jc(r) must be of bounded variation in any given bounded interval.

3. jc(r) must have a finite number of discontinuities in any given bounded 
interval, and the discontinuities cannot be infinite.

7.2 TRIGONOMETRIC FORM OF FOURIER SERIES

—  ^  > t
~Ta 0 T0 2T0

Figure 7.2: Periodic function and fundamental period
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Figure 7.2 shows an example of periodic function that can be expanded 
as a Fourier series. The fundamental period, which is the smallest pos­
sible period value, is denoted as 7o, and the fundamental frequency Q is 
expressed as

«  = (7.1)
! 0

While expanding a periodic function as a Fourier series, we only consider 
trigonometric functions whose angular frequencies are expressed as

iom = m il, (7.2)

where m is a natural number. In other words, a periodic function x(t) with
the fundamental frequency i2 can be expanded as

x(t) = ao + a\ cos(Qf) + aj  cos(2£2f) + a3 cos(3i2/) + • • ■
+ b\ sin(£2r) + ¿2  sin(2£2f) + ¿3  cos(3£2i) + • • •

or, in short,

OO
x(t) = ao + Z  [am cos(mi2/) + bm sin(m£ii)]. (7.3)

m= 1

Expression 7.3 is known as the trigonometric form  of Fourier series. Note 
that the coefficient ao represents zero frequency or DC component of the 
periodic function. Note also that cosine functions build up the even part 
of x(t)  and sine functions synthesize the odd part of the periodic function.

Having set up the mathematical prototype of Fourier series, the remain­
ing issue is how to determine the coefficients am and bm. We first consider 
a case that a periodic function can readily be expressed in terms of trigono­
metric functions, and then study the general approach of determining 
coefficients of the Fourier series.

Example 7.2 Determine the fundamental frequency and Fourier se­
ries coefficients of the following periodic function:

jc(f) = sin(^/) + sin: (/r/).
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Solution

. . 1 - c o s ( 2 /rr)
x(t)  = sin(;r/) + ------- -------- .

i 2

i It is obvious £2 = n, and we express

*(/) = j  ^  cos(2Î2/) + sin(£2f).

Three nonzero coefficients of the Fourier series are thus 

«o = a2 = and b\ = 1 .

Example 7.3 Determine the fundamental frequency and Fourier se­
ries coefficients of the following Fourier series expression:

00 4
x(t) = V  — sin2(/n;r/2 ) cos(4mnt). 

m
m=\

Solution

x(t )  = 4 sin2 ^  cos(4;rf) + 2 sin2 n  cos(8nt)

+ ^  sin2 ~  cos( 12 nt) + sin2 2 n cos( 16trt) +

It is obvious Í2 = 4n, and we express

x(t )  = 4 sin2 ^  cos(Qi) + 2 sin2 n  cos(2i it)

+ j  Siñ2 c0s(3l i t )  + Sin2 2n  cos(4£21) + •

The Fourier series coefficients àrè thûs

4 . 7 mn
a0 = 0 , am = — sin — , and bm = 0 . 

m 2
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7.2.1 Orthogonality of Trigonometric Functions

The general approach of determining the Fourier series coefficients is a 
consequence of the concept called the trigonometric orthogonalit}’. We 
thus briefly discuss the concept first and then introduce the approach of 
determining coefficient of the Fourier series.

In mathematics, orthogonality is the generalization of the notion of 
perpendicularity to the linear algebra of bilinear forms (Friedberg et al. 
2002). And the orthogonality is generally represented as zero inner product. 
In a function space, inner product of two functions /  and g can be described 
as

< / . * > =  [ b / ( ' )  g(t)dt ,
Ja

and the two functions are called orthogonal functions if the inner product 
equals zero (Kreyszig 2011; Snieder and van Wijk 2015).

The orthogonality of trigonometric functions are the foundation of the 
Fourier analysis, and we summarize the concept as follows:

• to+To
cos(milt) dt = 0,

fto 
•to+To

sin(miîf) dt = 0 ,
'to

• ¡o+To
cos (m ilt) cos (nQt) dt =

/ 'J to

/:
Lto

p  to+To
/  sin(mftf) sin(nQf) dt =

Jto

• to+Tof
Jtr\

(7.4)

(7.5)

1°\To/2
(m * n), 
(m = n),

(7.6)

f ° (m * n),
(7.7)

[To/2 (m = n),

0 , (7.8)
f to

where m and n are natural numbers. Note that the integration may begin at 
an arbitrary time to but should last for a complete cycle of the fundamental 
period To. We do not provide mathematical proof of the above expressions. 
Instead of that, we give an intuitive explanation as shown in Figure 7.3.

Figure 7.3 (a) demonstrates that with fo = 0.
• 'o+7(i

sin(5£2f) dt = 0./J to
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sin(5Q/)

(a)

sin(3Q/)sin(5ii/)

(b)

(c)

Figure 7.3: A demonstration of the orthogonality of trigonometric func­
tions

We also note that as m increases, the period of costmilf) and sin(mQ/) 
decreases as

T = 2n = llX -  T° 
m u m m il m

(7.9)

In other words, cos (m ilt) and sin(mQ/) repeat exactly integer number of 
cycles for to < t < to + 7o, and their integration results over a fundamental 
period must be zero. We are thus convinced that expressions 7.4 and 7.5 
are correct.

Figure 7.3 (b) suggests that with to = 0,
• 'o+7b

sin(3fir) sin(5i2f)dr = 0,
Ha

and, with a similar argument to the above case, we are convinced that 
expressions 7.6 - 7.7 are correct for m i  n. For in =  n,  expression 7.6 can

fJtf)
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be proved as follows:

f '0+T0 2/ „  x , r lo+To 1 + cos(2 mQ.t) ,
/ cos (mQi) dt = / -------- ^------- ’- d t

J  to J t o  2

i to+To sin(2wiQ/)) to+To

J'o 4m Q to

= [sin(2mQro + 2mQ7b)-sin(2mi2fo)l2
J  J

= — + -—— [sin(2wQio + 4^m)-sin(2mi2/o)l 
2 4mQ

= ^  + [sin(2m£2i0) -s in (2mi2/0)] =
2 4mi2 2

And it is evident that for m = n, expression 7.7 is also correct.

Finally, Figure 7.3 (c) demonstrates that with to = 0,

•  le+To

IJto
cos(5Qi) sin(2£2f) dt = 0, 

and convinces one that expression 7.8 is correct.

7.2.2 Coefficients of Fourier Series

With the trigonometric orthogonality in expressions 7.4 - 7.8 ready for 
use, it is straightforward to determine the Fourier series coefficient in 
expression 7.3.

We determine ao by integrating expression 7.3 over a fundamental 
period as follows:

rto+To rlo+To
/  x{t)dt  = ao dt  

Jto Jto

* f  l  r“  r rto+To rto+To
y . \ am cos(mQf)d t  + bm /  sin(m ilt)d t

I o Jtom=\

Expressions 7.4 and 7.5 simplify the above expression as

• ¡o+To

fJ to
x{t) dt = a0 T0,
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and we express the coefficient (i{) as
I r  /0+7(1

- T . i  T o Jr„
ao = ^r  /  x(t)clt. (7.10)

For the determination of the coefficient am, we first multiply cos(nilr) 
to expression 7.3 and integrate over a fundamental period as follows:

• /ii+7i> /•/o+Tn/•/(!+/() /•/o+'n
/ x(/) cos(nQr) dr = C1() /  cos(ní2/)d ỉ

J i n  J i l t

"  r  r'a+To r  h +Tii
+ V  a„, /  cos(míìt) cos(níìr) dt + b,„ / 
mTÍ L A. «An

cos(mQr) cos(nữt) dt + b„, / sin(mflr) cos(nQz) dr
J in

Trigonometric orthogonality now comes into play and enables one to write
as

/• Í0+7Ò “  /• /0+7Ò
/  jc(f) cos(nSlt)dt = V  am / cos(ffiili) cos(niit) dt

Jio m=i •'<0

=  a„ r  Tu COS2(n ilt)d t =
A) 2

We thus express am as

2  r'o+To2  r
° m ~  To j ,0

x( t)  cos(m ííí) dí. (7.11)

Similarly, multiplying sin (n il/)  to expression 7.3 and integrating over 
a fundamental period yields the following expression:

J ,  lo+To r t»+To
' x (i) sin(nQf) dt = ao /  sin(ni2/) ¿/f
in J  to

r rio+To rto+To
■X /  cos(m£2f ) sin(nQi) dt + bm sin(m£2r) sin(n£2f) df
m = l I  «'»o o

+
m

We then simplify the above expression as

rto+To rio+To
/ *(i) sin(nQi)dt = 2 \ b m /  sin(mi2i) sin(ní2í ) dt

Jin  m = |  • ' ' o

= b r To, - 2, - ^  b„To 
Jin

sin (nClt)dt  =
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and we express bm as
2 r  'o+7o

bm = — I x{t) sin(m ilt)d t. (7.12)
'0  Jt0

Example 7.4 Determine the fundamental frequency and Fourier se­
ries coefficients of the periodic function shown below.

*(/

-2 - 1 0  1 2

Solution

The fundamental period To is 2, and the fundamental frequency 
is given as £2 = 2n/To = n. For the derivation of Fourier series 
coefficient, we take the integration range between 0 and 7b.

1 r To 1 f 2 1

am =
2 r T° f 2

— / x( t)  cos(miii) dt  = I x ( t )  cos(mnt) dt  
To Jo Jo

r  1/2 r2
/  cos ( m n t ) d t +  /  cos (mnt)  dt  

Jo J  3/2

f sin(mwf) 1/2
+ | sin(mfff)|

[ mn 0 mn JJ 3/2

sin(mn/2) -  sin(0) + sin(2m7r) -  sin(3/n7r /2 ) 
mn

sin(wi7r/2) -  sin(3m7r /2 ) _ 2 sin(/w7r /2 ) 
mn mn
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2 / {mn) (m = 1,5.9. ---).
0 (m = 2,4.6. ).
- 2 / ( mn)  (m = 3,7,11, • • • ).

-  1 .  f Tl> 
To Jo

x(t)  sin(mQr)df =s> (/) sin(mnt )dt

• 1/2ÇML r 2
= / sin {m7it)dt+ I sin (mnt)dt

JO  J  3 / 2

f cos(m^f) cos (mnl) 2

[ mn 0 mn 3/2
cos(O) -  cos(mn/2) + cos(3mw/2) -  cos(2mn)

mn

= 0.

Example 7.5 D e t e r m i n e  t h e  f u n d a m e n t a l  f r e q u e n c y  a n d  F o u r i e r  s e ­

r i e s  c o e f f i c i e n t s  o f  t h e  p e r i o d i c  f u n c t i o n  s h o w n  b e l o w .

j(f)

-2 - 1 0 1 2
t

Solution

The fundamental period To is 2, and the fundamental frequency 
is given as Q = 2n/To = n. For the derivation of Fourier series 
coefficient, we take the integration range between 0 and 7o.
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i r To l r 2
ao = — x( t )d t  = -  x ( t ) d t  = 0 .

Io Jo Jo

2  rTo r 2
am = — j  x(t) cos(mClt) dt = /  x(t) cos(mnt) dt 

To Jo Jo
cos(mnt) f 2 cos(mnt) ,
— 2— 2

f sin(mnt) i f sin(/7i7rOl
j 2 mn 0 1 2wtt j

2

sin(m;r) -  sin(O) + sin(mTr) -  sin(2m7r) _ 
2 m n

2  r  T° r 2
= — /  jt(r) sin(m£2i) dr = /  x(t) sin(mnt) dt 

To Jo Jo
f 1 sin(m ^i) ^  f 2 sin(mTrf) ^

jo 2 J\ 2

cos(mnt) 1 1 f cos(mn’i)_ i cos(mffQl + i
[ 2mff J0 [ 2m;r

_ cos(O) -  cos (mn)  + cos(2 mn) -  cos (mit)
2  mjt

_ 1 -  cos(mn) _  J 2 / (mn) (m = 1 ,3 ,5 , • • ■ ) , 
ffi7r | o  (m = 2 ,4 ,6 , ••■).

Examples 7.4 and 7.5 demonstrate that the Fourier series expansion 
of an even function does not require sine functions (bm = 0), while the 
expansion of an odd function does not require cosine functions (am = 0 ). 
Generally speaking, while synthesizing a periodic function via Fourier 
series, cosine functions contribute on the even part of the function whereas 
sine functions build up the odd part of the function. Incidentally, the two
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models in Examples 7.4 and 7.5 represent the even and odd parts of the 
model in Figure 7.1.

7.3 AMPLITUDE-PHASE FORM OF FOURIER SERIES

We have so far expressed Fourier series in the trigonometric form, which, 
in general, uses both cosine and sine functions at the same time to represent 
a frequency component. In fact, we can reduce the number of functions 
and use only one function for each frequency component as follows:

*(/) = YAm cos(wii' + (7-13>
m=0

Expression 7.13 is called the amplitude-phase form  of Fourier series. To 
associate the two different forms with each other, we rewrite expression
7.13 as

x ( t ) = Ao cos(^o) + cos ( ill + ip\) + Ai  cos(2 iif + ^ 2) + • • •
= Ao cos(^>o) + ^1  cos(Clt) cos(y)i) + M  cos(2i 2/) cos(y>2) + • • •

-  A\ sin(iîr) sin(^i) -  Ai sin(2i2/) sin(^2) ------■

Comparing the above expression with expression 7.3, we make connection 
between the two different types of coefficients as

ao = ^ 0  cos <po, &m ~ Am cos ifm, bm = ~Am sin <pm,

or, equivalently as,

0 II IT 0 (7.14)

<fio = •
0 (ao > 0), (7.15)
±n (a0 < 0),

Am — ■J@m "*■ bm * (7.16)

<Pm = --UuTl (bm/a m). (7.17)

The amplitude-phase form is a powerful way of representing Fourier 
series and suggests one to ponder again the meaning of Fourier series. We 
have argued that the Fourier series expansion is to decompose any periodic 
function into a combination of sinusoidal functions. And each different
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sinusoidal functions represent different frequency components with their 
own amplitude and phase values. In other words, the two coefficients 
Am and ipm are the ones that exhibit the amplitude spectrum and phase 
spectrum of the original periodic function.

Example 7.6 Sketch the amplitude and phase spectra of the following 
periodic function:

jr(i) = - 2  + 4 cos(87rf + n / 6 ) + sin(1 2;rr) -  3sin(20^i).

Solution

With Q = 4n, we write x(t) as

x(t) = 2cos(-;r) +4cos(2Q/ + n / 6 ) + cos(3£2f -  n/2)
+ 3cos(5i2/ + ;r/2),

and identify the coefficients Am and <pm as

Ao = 2, Ai  = 4, A3 = 1, A5 = 3,
Vo = - it , <P2 = t t /6, <pi = —it/2 , ips = it/2.

We finally determine Tq = 2tt/Q  = 1 /2, take A / = 1 /To = 2, and
sketch the amplitude and phase spectra as follows:

0 2 4 6 8  10 0 2 4 6 8  10

/(Hz) /(Hz)
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Example 7.6 well demonstrates the concept of amplitude and phase 
spectra, but the original periodic function v(/) is already expressed as a 
combination of sinusoidal functions. For a more general example, consider 
the periodic function in Figure 7.1. We do not need to derive the Fourier 
series coefficients of the model, because the two models in Examples 7.4 
and 7.5 are the even and odd parts of the model in Figure 7.1. The Fourier 
series coefficients of the model in Figure 7.1 is derived by simply adding 
the results of Examples 7.4 and 7.5 such that

oo = 1 / 2 ,

2 / (mn) (in = 1.5,9, •••) ,
fl/n — ' 0 (ni = 2,4,6, ■■■),

- 2 / (mn) (m = 3,7,11, • ■ •) ,

2  l (mn) (m = 1,5,9, •■•),
bm = • 0 (m = 2,4,6, - ) ,

2 / (mn) (m = 3,7,11, - ■ ■ ) .

The coefficients of the amplitude-phase form are thus expressed as 

A0 = l / 2 ,

<Po = 0,

2  y/2 / (mn) (m=  1,5,9, •••) ,
Am — ' 0 (m = 2 , 4 ,6, • • • ) ,

2 yl2 / (mn) (m = 3,7, l l , - - ) .

- n /4 (m=  1,5,9,-••),
<Pm = ‘ 0 (m = 2,4.6. •■•),

—3tt/4 (m = 3,7, l l , - - - ) .

Figure 7.4 shows the amplitude and phase spectra of the model shown 
in Figure 7.1. Note that the horizontal axes have been converted from the 
series index m to the linear frequency / .  The relation between the series 
index and the frequency is expressed as

/ m = m A / = ^ .  (7.18)
‘o
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tt
K <pm

n /2

0 1 1 1 1 ' 1 ' i I
1 1 , - i t /2 1 !

- n .
0 2 4 6 8  10 0 2 4 6 8  10

/(Hz) /(Hz)

Figure 7.4: Amplitude and phase spectra of the model shown in Figure 
7.1. The fundamental period 7o of the model is 2, and thus the 
frequency interval A / is 0.5.

7.4 EXPONENTIAL FORM OF FOURIER SERIES

Two different forms of Fourier series have been introduced. There is, in 
fact, one more form that is called the exponential form  of Fourier series. 
And representing Fourier series in the exponential form is the foundation 
of the remaining discussion about Fourier analysis.

Recalling the Euler’s formula in Appendix C and expressions C.7 - 
C.8, one may rewrite the trigonometric functions in expression 7.3 as

g jm S il  +  g - j m i l l  
cos (m ilt) = -------------------—------ ,

pjm Cll  _  -- jm C ll f . - j m i l t  _  ¡„ jm O j
sin (m ilt) = -------------------------------------------- - --= ]- ---- ^ ---- .

The trigonometric form of Fourier series then transforms to
OO

x(t) = a0 +
m=1
OO

g jm i l l  +  g - j m i i l  j g - j m i i t  _  jg jm O l

&m Z + bm —

m =\

Om jbm  _ jmOJ
OO

. y +  jbm
J
1

2  *  j 1 Z j
m=  1

2

Denoting

X [0 ]= a 0, X[m] =
&m jbm  r .  a m +  j b m

, and X[~m] = -----^ — ,(7.19)
2 1 J 2 

respectively, we first rewrite the expression of Fourier series as

x(t) = X[0] + X[m] ejma' + ^  X [ - m ] e -Jma'
m - 1 m =  1
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and further simplify the expression as

x ( t ) =  X \ m \ e /mU' . (7.20)
WI=-oo

Expression 7.20 is the exponential form of Fourier series. The signifi­
cance of the sequence X[m]  is not clarified yet. To better substantiate the 
significance of the sequence X[m\,  we recall expressions 7.10 - 7.12 and 
evaluate the three quantities X[0], X[m], and X[-/n] as follows:

1 r  i /• t\)+Tu
X[0]=ao = — x( t )d t  = — I x(t )ej 0a i dt,

*0 Jto *0 Ji{)

x W  = a- z z l h L

j r  h)+To ; r'o+T0
= —  I x(t)  cos(mQf) dt -  — /  x(t)  sin(m£2/) dt

m) J /0 m) «//0
j /•io+T’o

= — /  jc(r) [cos(miii) -  7 sin(m£2/)]
m) /̂0 
j rto+To1 /•*0+̂ 0 

= ^ - /  x W e - ^ d t ,  
*0 J/o

a n d

2
|  /»/o+Tb pto+To

-  I x (t) co s(mSlt) dt + — /  jc(i) sin(m Q f) df 
To 7i0 7o J ,0
1 /• >o+7o

To Jt0
1 / * < o + / o

= -  I  x ( t ) e 'ma,dt. 
To Jt0

x(t )  [cos(m£2i) + j  sin(m£2i )] rfi

to+To

It is obvious from the above evaluations that regardless of the value of m,  
the sequence X[m \c a n  be always expressed as

1 r /o+7b
X[m] = ±  x  (t)e~jma,dt. (7.21)

*0 Jt0
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Example 7.7 Obtain the exponential Fourier series coefficients of the 
following function:

X ( t )  = 1 +COS3(27Z7)-

Solution

The fundamental frequency Q = 2n.

x(t) = 1 +
g j t o  +  e  j & i  3

= 1 + 1 [ePii/ + 3ejsu + 3e-ja, + e- j x i/j
o

= L -y 3 0 r+ 3 JOt 3 ja, \  JJOt
8 8 8 8

Therefore, * [ -3 ]  = 1/8, X[ - l ]  = 3/8, X[0] = 1, X[l ]  = 3/8, and 
X[3] = 1/8.

Example 7.8 Determine the Fourier series coefficients X [m] of the 
model shown in Figure 7.1.

Solution

With To = 2, Î2 = n,  we take the integration range between 0 
and Tq.

X[m] = ^r  ( Ta x{t) e -jmat dt = \  f 2 x(t) e -jmn' dt 
To Jo 2 Jo

3 r 1,2 ■ i r l
= 7  /  e-jmn,dt + -  /  e~jmn' dt

4 Jo 4 J Xjl

i rvl i r2_ /  e-m*< dt + -  /  e- jmn'dt
4 J\ 4 J y  2
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3 e-jmni 1/2 1 e~jmni

4 j m n (, 4 j mn

e-jmnt 3/2 1 g-jmm 2

jm n i 4 jm n
3 / 2

3j [ e ~ jm*12 -  11 j [ e -i"'n -  e - ’mnl2}

4mn 4mn
j [ e - j lm n /2  _  e ~ jm n j  j ^ e - j lm n  _  e - j i m n / 2 j

4mn 4m n

2 mn

The above expression is, however, not suitable for m = 0. We thus 
separately evaluate X[0] as follows:

7.4.1 Amplitude and Phase Spectra

We have argued that with the amplitude-phase form, the amplitude and 
phase spectra of a periodic function is represented by Am and <pm- With the 
exponential form of Fourier series, the amplitude and phase information of 
the periodic function x(t)  is encapsulated in the complex quantity X[m\.  
Expressing the sequence X[ m] as

3 y [ ( - ;)w -  1] , y [ (~ l ) m -
4mn 4mn

X[m ] = \ X[m] \e^m, (7.22)
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we identify that |X[m]|  and 0m are the ones that represent the amplitude 
spectrum and phase spectrum of x(t).

In Example 7.8, we have studied that the Fourier series coefficient 
X[m\  of the model in Figure 7.1 is expressed as

y [ - i + (_ ,•)'"+ ( - ! ) m - o r )
X[m] =

Taking the amplitude |X [w] | and phase 8m of the complex quantity, we can 
display the amplitude and phase spectra of the periodic function as shown 
in Figure 7.5. Note that we also display the amplitude Am and phase ipm for 
comparison. It is well demonstrated in Figure 7.5 that amplitude and phase 
spectra of the exponential form are, in principle, equivalent to those of the 
amplitude-phase form. Main difference between the two is that in the case 
of the exponential form, the frequency axis is extended to the negative 
values. And, while extending the frequency axis of display, amplitude 
values are reduced to the half and copy-pasted with even symmetry around 
the zero frequency. Phase values are, on the other hand, not altered and 
copy-pasted with odd symmetry. In other words, amplitude spectra |X [m ] | 
should always maintain even symmetry, whereas phase spectra 6m should 
always exhibit odd symmetry. Incidentally, the physical significance of 
negative frequency is the opposite direction of rotation or wave movement.

8
6
4

2

K

-10 -5 0 5 10
/(Hz)

8
6
4

|* M .

n

n i l

0

- n i l

<pm

' 1 ’ ’ ’ 1
10 -10

n  

n i l  

0 '
- n i l

-10 0
/(Hz)

10 -10

/(Hz)

0
/(Hz)

10

I r l Tf t l r l f, V
‘ 1 PI 1 1

10

Figure 7.5: Amplitude and phase spectra of the model in Figure 7.1. The 
fundamental period 7o of the model is 2 , and thus the frequency 
interval A /  is 0.5.
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7.4.2 Even and Odd Functions

Example 7.9 Determine the Fourier series coefficients X [ m] of the 
model shown below.

2f-----------------

t

Hint: Refer to expression B.44.

Solution

With To = 1, £2 = 2n,  we take the integration range between
0 and To.

AT[m] = f T° x(t) e -Jmat dt = f ' dt.
To Jo Jo

i t e ~j2mnt e ~j2miti I 1 i  e ~jlmnt  1 1

( - j l m n )  ( - j 2mn)2\ 0 [ 2mn + (2mn )2\ 0
j e -J2mk g -jlm n  _  j

2mn  + (2 mn)1 2 mn

The above expression is, however, not suitable for m -  0. We thus 
separately evaluate X[0] as follows:

1 r T° /*' 1

X [ 0 ]  =  T0 Jo x { t ) d t  =  J  t d t  ~  2 '

Figure 7.6 shows the amplitude and phase spectra o f the periodic time 
function in Example 7.9. It is worthwhile to note that except at zero fre-
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-20 -15 -10 -5 15 20 -20 -15 -10 -5 15 20

Figure 7.6: Amplitude and phase spectra of the model in Example 7.9.
The fundamental period To of the model is 1, and thus the 
frequency interval A / is 1.

quency, phase values are either tt/2 or - n / 2 .  The reason is mathematically 
explained by analyzing X[ m] as

X[m] = - L -  = ^ - e ^ \  |X[m]| = - i - ,
2m n 2mn 2\m\n

and

_  U /2  (m > 0),
m \ - n ! 2  (m < 0).

We should not, however, satisfy without having geometrical meaning of 
the above mathematical explanation. Recall that

cos (m ilt ± n/2)  = *  sin(mi2r).

In other words, exhibiting ±n/2  in the phase spectrum means that the 
Fourier series only involves sine functions. Ignoring the zero frequency 
component, the original periodic function x(t)  is thus an odd function. It 
is evident in Example 7.9 that amplitude shifting the model (x ( t ) -  1 /2) 
yields an odd function.

Having the expression of X[m], one can reconstruct the original peri­
odic function with expression 7.20. It is, however, inevitable to limit the 
range of summation as follows:

k
x ( t ) =  Y j X [ m ] e jmai. (7.23)

m=-k

Expression 7.23 is called the truncated Fourier series. Note that the range 
of summation should be symmetric around m = 0 , because losing the

148



(-1 < m < 1) ( -20 < m < 20)

Figure 7.7: Truncated Fourier series of the model in Example 7.9

symmetry yields complex-valued x(t),  which is. of course, unrealistic. 
Figure 7.7 shows reconstructed models. It is clear that the truncated 
Fourier series well reconstructs the model in Example 7.9.

Example 7.10 Determine the Fourier series coefficients X[ m ] of the 
model shown below.

-2 - 1 0  1 2

Solution

With To = 2, £2 = n,  we take the integration range between 
-To/2 and 7b/2.

i rTo/2 ■  ̂ i /*1
x [m \ = /  x(t) e Jmiit dt = -  cqs(tt//2 ) * y"”r' </f

* 0  y - T o / 2  2  J - \

= \ J  [eJWlf2 + e^jml2} e -jm’r' dt

-  I f  e i ( n ! 1 - m n ) i  +  J. i  e ~ j(n /2 + m n )l

4 J~\ 4
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g j ( n l2 - m n ) l l g - j(n /2 + m n ) t

J 4 ( n / 2 -  mn) -i j4 (n /2  + mn)
e j ( n / 2 - m n )  _  g - j ( n l 2 - m n )  g - j ( n / 2 + m n )  _  g j ( n / 2 + m n )

j 4 ( n / 2 - m n )  j 4(n / 2  + mn)
e j n / 2  g - j m n  _  g - j i r/2 g j m n  g - j n / 2  g - j m n  _  £ j n / 2 g j m n

j 4 ( n / 2  -  mn) j 4(n / 2  + mn)
g - j m n  +  g j m n  g - j m n  +  ^  c o s ( w ^ )  C O S ( m ^ )

4 ( n / 2 - m n )  4(n/2 + mn) n ( l - 2 m )  n ( l + 2 m )

n t f f t f t f t t f  ---------------------------

nil

-nil
-x  -------- *--------  1 1 1 1  i  1 1 1  i  i

-10 -5 0 5 10
/(Hz)

Figure 7.8: Amplitude and phase spectra of the model in Example 7.10.
The fundamental period 7o of the model is 2, and thus the 
frequency interval A / is 0.5.

I (s) t (s)

Figure 7.9: Truncated Fourier series of the model in Example 7.10

The periodic time function in Example 7.10 has an even symmetry. 
And the even symmetry enforces the Fourier series coefficient X[m] to 
be real, regardless of the value of m. The resultant amplitude and phase 
spectra are shown in Figure 7.8. Note that the phase values of an even 
function must be either 0 or ±n.
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PROBLEMS

Problem 7.1 Determine the fundamental frequency and Fourier series 
coefficients a„, and bm of the following periodic f unction:

jt(/) = 2 + cos(27t/ / 3) + 4sin(5;rr/3).

Problem 7.2 Determine the fundamental frequency and Fourier series 
coefficients am and bm of the following Fourier series expression:

2
x(t) = }  — s\n(4mnt) cos1 (mn). 

■¿-i m m= I

Problem 7.3 Use the result of Example 7.4 and make a MATLAB script 
that synthesizes the periodic function of Example 7.4. You may modify 
the script of Example 7.1.

Problem 7.4 Use the result of Example 7.5 and make a MATLAB script 
that synthesizes the periodic function of Example 7.5. You may modify 
the script of Example 7.1.

Problem 7.5 Sketch the amplitude and phase spectra of the following 
periodic function.

x(t)  = 6 sin(27Tf -  n/6)  -  4cos(4^i) + 3cos(6wi + 2ff/3).

n

ir /2

0

- n i l

- t t
0 2 4 6 8  10 0 2 4 6 8  10

/(H z) /(Hz)
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Problem 7.6 Obtain the exponential Fourier series coefficients for the 
following periodic function:

x(r) = 1 +cos2(nt) -  sin3(7rr).

Problem 7.7 Show that the exponential Fourier series coefficient X [m] 
of the periodic function shown below is

tmzm.
2 mn

Problem 7.8 Show that the exponential Fourier series coefficient X [m] 
of the periodic function shown below is

x(t)

-2 - 1 0 1 2

Problem 7.9 Which of the following is the exponential Fourier series 
coefficient X[m] of the periodic function shown below? Choose one.
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-0.5 ----------------
-4 -3 -2 - 1 0  1 2  3 4

I

\ - e - 4 L 1 -  e ' 4 l - e ~ 4 J 1 -  e ' 4
a. ----------  b. ----------  c. ------------ d. ------------

4 + j m n  4 - j m n  4 + j2m n 4 - j 2 m n

1 -  e~4 1 -  e~4 1 -  1 -  e~4
C 4 + jlrrm  4 -  j3m n  ® 4 + y'4m^ 4 -  jAmn

Problem 7.10 Which of the following is the exponential Fourier series 
coefficient X[m] of the periodic function shown below? Choose one.

1.5

I

0.5

0

-0.5

L
1

- 4 - 3 - 2 - 1 0 1 2 3 4
t

1 -  e -12
a.

12 + jm n

1 - e - ' 2 
12 + j3m n

1 - e •12

f.

1 2 -  jmjT

1 -  e~n  
12 -  j3m n

c.
1 -  e-12

1 2 + j2m n

1 ~ e~.12 
12 + j4m n

d.

h.

1 - e -12

1 2 -  j2m n

1 -  e~12 
12 -  j4m n
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PROPERTIES OF FOURIER SERIES

Chapter X

8 .1 LINEARITY OF FOURIER SERIES

Consider Fourier series expansion of two periodic time functions x\(t)  
and X2 (t). We assume the two functions have an identical fundamental 
frequency £2 such that

x t ( t )=  £  X {[m]ejma' and x2(t) = £  X2[m]ejma>. (8.1)
m = -o o  m = —oo

It is obvious that a linear combination of the two functions:

Xi(t )  =  ax\  { t)  + bx2(t)  (8 .2 )

also yields a periodic function, and the fundamental frequency of xi(t )  
must be £2. We thus express X3( t)  as

oo

x 3( t ) =  Y  X3lm]ejma> (8.3)
m = -o o

and the Fourier series coefficient as

Xi\ni\  = aX\ \m) + bX2\m\.  (8.4)

The above expression represents thé linearity of the Fourier series. Noté 
that the linearity is easily extended to an arbitrary number of functions as 
far as all of those functions have an identical fundamental frequency.

Three periodic functions shown in Figure 8 .1 have the identical fun­
damental frequency (Q = 2n/To = n) and satisfy the following linear 
relation:

*3(0 = * | ( 0  + * 2(0 -

The Fourier series coefficients X\ [m] and X2[m] have been derived in 
Problems 7.7 and 7.8 as
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*,(/)

t
+

•v2(0

-2 -1 0 1 2 
/

Figure 8.1: Examples of periodic functions that have an identical funda­
mental frequency

and

2m n

The Fourier series coefficient ^ [ m ]  has been derived in Example 7.8 as

y [ - i  + ( - y r  + ( - i ) m - o ) m]Xi[m] =
2mn

It is obvious that the above Fourier series coefficients satisfy the following 
relation:

X3 [m] = X\ [m] + X2 [m].

In other words, Fourier series coefficients satisfy the same linear relation 
of the periodic functions the Fourier series coefficients are representing.

8.2 FOURIER SERIES AND EVEN /  ODD SYMMETRIES

We have discussed in Chapter 7 that the Fourier series expansion of an 
even periodic function only requires cosine functions and, as a result of 
that, the phase values must be either 0 or ±n. While handling an idd 
periodic function, on the other hand, sine functions are enough for the
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Fourier series expansion, and the phase spectrum should only exhibit 0 or 
±n/2  values.

One can associate the Fourier series coefficient X[m] with the even/odd 
symmetry of periodic functions. Consider the following Fourier series 
expansion:

x(t)  = 2) X[m]e jmil1

= ■■■ + X[-2] e-j2ai + X [ - \ \ e - jSl' + X[0]

+ X [l] ejSh + X[2] eJlsl1 + ■ ■• .

The Fourier series expansion of x ( - t )  is then expressed as

x ( - t )  =  2  X [ m ] e - Jma‘

= ■■■ + X [ - 2 ]  ej2a> + X [ - l ] e ja> + X[0]

+ X [ l ] e - ja t  +  X [ 2 ] e - J2a, +  - -

Comparing the two expressions, we find that the even symmetry of a 
periodic time function (i.e., xe(t) = xe(- t ) )  demands

Xe[m] = Xe[-m\.

We now consider expression 7.19 and rewrite the above expression as

Xe [ m ] = X ; [ m ] ,  (8.7)

where the * symbol denotes the complex conjugate. Expression 8.7 thus 
means that the Fourier, series coefficients of an even function must be real. 
In the same token, the Fourier series coefficients of an odd function must 
be zero or imaginary such that

X 0 [m) =  -X*0 [m].  (8.8)

Figures 8.2 and 8.3 show the amplitude and phase spectra of Jti(f) 
and X2 ( 0  in Figure 8.1, respectively. It is clear that the even symmetry 
o f jci(f) yields real-valued X\ [m\ (expression 8.5), and the real-valued 
A'i [m], in turn,’accompanies the phase specttum that ohly fcxhibits'O of 
±n.  Similarly, the odd symmetry of *2 (0  yields imaginary-valued X2[m] 
(expression 8.6), and its corresponding phase spectrum only exhibits 0 or 
±n/2.  Incidentally, it is noteworthy that amplitude spectra always have 
even symmetry, but phase spectra always demonstrate odd symmetry.
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4
3
2

-10
/ (H z ) / ( H z )

Figure 8.2: Amplitude and phase spectra of the even function jci (/) in 
Figure 8.1. The fundamental period 7o of the function is 2, 
and thus the frequency interval A / is 0.5.

/(Hz)
10 0

/ ( H z )
10

Figure 8.3: Amplitude and phase spectra of the odd function x2 (/) in 
Figure 8.1. The fundamental period 7o of the function is 2, 
and thus the frequency interval A / is 0.5.

8.3 FOURIER SERIES AND TIME OPERATIONS

Several time operations have been introduced in Chapter 3. We consider 
those time operations again and discuss how each different time operations 
of a system alter frequency characteristics of periodic time functions.

8J.1 Time Shifting

Time shifting is described by the following input-output relation:

y{t) = x(t  -  t0),

and the fundamental frequency of the input function is preserved. We thus 
write the following expressions:

x( t )=  Y  X[m]e jma‘ and y(t) = £  Y[m]eimih,
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and associate the two as
OO L\>

v (f)=  £  Y[m\e jmil' = .v ( / - r (l) = £  X[m] ejma{,-'")
m= - 00 m=-cc

00

= ^  X[m]
m = - 00

- jm O lo  g jm S h

It is evident from the above expression that

Y [ m ] = X [ m ] e - jmSl,a. (8.9)

Denoting phase spectra of x( t)  and y(t)  as 9m and 1¡jm such that 

X[m] = \X[m]\ej6m and Y[m] =

we write

| K [ m ] |  =  | X [ m ] | ,

and

iftm =Om -m£l to .  (8 .1 0 )

In other words, time shifting operation does not alter the amplitude spec­
trum of the input function but tremendously changes the phase spectrum.

Figure 8.4 shows an example of time shifting operation with /0 = 1/12. 
The Fourier series coefficient X[m ] is given in Example 7.9 as

X[m] =
[ 1 / 2  (m = 0) ,
I ei”!2/ (2 mn) ( m i  0) ,

and the amplitude spectrum |X[m] | and phase spectrum 6m are expressed 
as follows:

|X [m] | =
1 / ( 2mn) (m > 0)
1 / 2  (m = 0) and 6m -
\[(2\m\n)  (m < 0)

n /2  (m > 0) 
0 ( m  =  0) 

- n /2  (m  < 0 )

Applying 7o = 1, £2 = 2n and to = 1/12 to expressions 8.9 and 8.10, we 
derive the Fourier series coefficient Y[m) that correspond to the periodic 
time function y(t)  in Figure 8.4 as

Y[m ] =
1 1 / 2  (m=  0 ) ,
I e-j<mn/6- n/2)/(2mn) ( m t  0) .
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/ V k V I

Figure 8.4: Periodic time functions before and after the time shifting: 
y ( t ) = x ( t -  1 / 12 ).

i t

-20 - 1 5  - 1 0  - 5 1 0  1 5  2 0 - 2 0  - 1 5  - 1 0  - 5 0  5

/(Hz)
1 0  1 5  2 0

Figure 8.5: Time shifting and its influence on the amplitude and phase 
spectra. Gray and black plots are related to x(l)  and y(t)  in 
Figure 8.4, respectively. The fundamental period To of the two 
functions is 1, and thus the frequency interval A / is 1.

The amplitude spectrum |K[m] | and phase spectrum 4>m are thus expressed 
as follows:

\Y[m]\ =
l /(2 m 7 r)

1/2
1 /  (2 |m|7r)

(m >0) 
(m = 0) 
(m < 0)

and </rm =
7t/ 2  -  mji/6 (m > 0) 
0 (m = 0)
-7 r /2  -  mn/6 (m < 0)

Note that the above approach of deriving the Fourier series coefficient 
Y[m\ is much simpler than the direct integration of y(t) via expression
7.21. The amplitude and phase spectra of x(t)  and y(t)  are shown in 
Figure 8.5.

8.3.2 Time Reversal

Time reversal is described by the following input-output relation:

y ( t ) = x ( - t ) ,
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and the fundamental frequency of the input function is preserved. We thus 
write the following expressions:

OO 00

x ( t )=  £  X[m]ej ",n' and y(t) = Y[m]ejma',
m=-oc m= -  -X3

and associate the two as

v ( i)=  2  Y[rn)ejmai =.x(-t) = £  X[m] e~imai
m = -o o  m = -o o

= £  X [ -m ]^ " ,n'.
m - - o o

It is evident from the above expression that

Y[m\ = X[-m] = X*[m\.

Denoting phase spectra of x{t) and y(t)  as 8m and \Jjm such that 

X[m] = \X[rn]\ej(>m and Y[m\ = \Y[m]\e*'l'm,

we write

|K[m]| = |X M |,

and

(8.11)

(8.12)

In other words, time reversal operation does not alter the amplitude spec­
trum of the input function but changes the sign of the phase spectrum.

Figure 8.6 shows an example of time reversal operation. The Fourier 
series coefficient Y [m] is derived as

Y[m) =
1 / 2  (m = 0 ) ,
e~j”/2/ ( 2 m n )  ( m  *  0 ) ,

and the amplitude spectrum and phase spectrum tf/m are expressed
as follows:

1 K lm it)  (m > Ô)
1 / 2  (m = 0 ) and ij/m =
l / ( 2 |m|;r) (m < 0)

The amplitude and phase spectra of Jt(f) and y(t)  are shown in Figure 8.7.
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\Y[m]\ =
- t t / 2  (m > 0 ) 
0 (m = 0) 
tt/ 2  (m < 0)
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0

Figure 8.6 : Periodic time functions before and after the time reversal: 
y ( r ) = x ( - t) .

1 0  I S  2 0 - 2 0  - 1 5  - 1 0  - 5 0  5

/(H z)
1 0  1 5  2 0

Figure 8.7: Time reversal and its influence on the amplitude and phase 
spectra. Gray and black plots are related to x(t )  and y(t)  in 
Figure 8.6, respectively. The fundamental period 7o of the two 
functions is 1, and thus the frequency interval A / is 1.

Example 8.1 The phase spectrua of jci (/) and X2 (0  in Figure 8.1 
are shown in Figures 8.2 and 8.3. Sketch the phase spectra of 
yi (t) = *1 ( - / )  and y2( 0  = *2( - /) .

Solution

/(H z)

nil

- t i l l

UJ.UUJ.1J1 Ï Ï 1 Ï Ï 1 Ï Ï J
10 -10 0  5

/(H z)
10

Note that x\( t)  in Figure 8.1 is an even function and time reversal

162



should not alter the function such that \ |(/) =.vi ( - f )  = .V|(i). How­
ever, phase spectra of jci (/) and y i (/) look different (compare Example
8.1 and Figure 8.2). Do not be puzzled by the apparent difference. The 
two phase spectra may look different, but they are, in fact, identical 
to each other because phase value n is identical to - n  within a phase 
spectrum.

8.3.3 Time Scaling

Time scaling is described by the following input-output relation:

y ( 0 = x ( a f )  ( ứ > 0 ) ,

and unlike time shifting or reversal, the fundamental frequency of the 
input function is NOT preserved. Assuming the following input function:

x(t) = X [ m )e jmai,
m = -oo

we can express the output function as

y ( t ) =  ỵ  X [ m ] e ^ ' .
m= -00

It is evident from the above expression that the fundamental frequency of 
y(t)  is different from thạt of x(t). Denoting the fundamental frequency of 
y(t)  as Ù and the fundamental period as 7o, we may establish the following 
relations:

ã  = íla , (8.13)
To = To/a, (8.14)

and express the Fourier series expansion of y(t) as
eo

y ( t ) =  Y  X [ m } e ^ .
m - - o o

The above expression demonstrates that time scaling operation does not 
alter the formal representation of the Fourier series expansion, and the
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? \ À A / yO )^

Figure 8.8: Periodic time functions before and after the time scaling: 
y ( t )=x( t /2 ) .

/(Hz) /(Hz)

Figure 8.9: Time scaling and its influence on the amplitude and phase 
spectra. Gray and black plots are related to jc(/) and y{t) in 
Figure 8.8, respectively. The fundamental periods of *(/) and 
y(t) are 1 and 2 , respectively, and thus the frequency intervals 
A / are 1 and 0.5, respectively.

only difference the time scaling operation makes is the change of the 
fundamental frequency.

It is noteworthy that time scaling is related to frequency scaling in a 
systematic way. Expression 8.14 indicates that time compression (a > 1) 
reduces the fundamental period 7o and thus increases A / in the frequency 
domain. On the other hand, time expansion (a < 1) enlarges the funda­
mental period of y(t) and, as a result of that, decreases A/  in the frequency 
domain. In other words, time compression invokes frequency expansion, 
whereas time expansion accompanies frequency compression. Figure 8.8 
shows an example of time expansion operation, and the amplitude and 
phase spectra of x(t) and y(t)  are shown in Figure 8.9.
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8.3.4 Time Differentiation

Time differentiation is described by the following input-output relation:

d.x(t)
y(t) =

dt
and the fundamental frequency of the input function is preserved. We thus 
write the following expressions:

* ( /)=  2  X[m ]eJmai and >■(/)= £  Y[rn]eJmS1',
m = -oo  n i= -cc

and associate the two as

y(t) = £  Y[m]eJmSl' = ^ -  = j m a X [ m ] e Jm0‘.
m=-oo m=-oo

It is evident from the above expression that

Y[m] = jmSlX[m] = mSlX[m] ejn/2. (8.15)

Denoting phase spectra of x(t) and y(t) as 6m and 4>m such that 

X[m] = \X[m]\eiB" and Y[m] =

we write

|K[m]| = |m£2X[m]|,

and

9m + ff/ 2  (m > 0) ,
0 (m = 0) ,  (8.16)
9m -  n/2  (m < 0) .

In other words, time differentiation operation alters both the amplitude 
and phase spectra and, more interestingly, involves ±90° phase shifts in 
the phase spectrum.

Consider, for example, the timedlffferfcrttiatfort Operation depitted ift 
Figure 8.10. The Fourier series coefficient X[m] is given in Example 7.10
as

cos(mTr) cos(mn) 
tt( 1 -  2m) ?r(l + 2m)
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Figure 8.10: Periodic time functions before and after the time differentia­
tion: y(t) = dx(t)/dt.

/(Hz) /(H z)

Figure 8.11: Time differentiation and its influence on the amplitude and 
phase spectra. Gray and black plots are related to x(t)  and 
y(t)  in Figure 8.10, respectively. The fundamental period To 
of the two functions is 2 , and thus the frequency interval A/  
is 0.5.

It is obvious that regardless of the value of m, X[m\  is always real and 
changes sign in an alternating fashion as m varies. Applying To = 2 and 
Q = 7r to expression 8.15, we derive the Fourier series coefficient Y[m\  
that correspond to the periodic time function y( t ) in Figure 8.10 as

Y[m] = mn
cos(mn) cos (mn) 

n ( l - 2 m )  n ( l+ 2 m )

Note that y(t)  has an odd symmetry whereas x(t)  has an even symmetry, 
and, as a result of that, Y[m] is always imaginary (for m + 0) and phase 
values of the coefficients are ±n/2.  The amplitude and phase spectra of 
x(t)  and y(t) are shown in Figure 8.11. One should observe 90° phase 
shift for /  > 0 and -90° phase shift for /  < 0.
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Example 8.2 Consider .x(t) shown in Figure 8.10 and the following 
functions:

d2x{t) d\x{t)
, , ( , )  = - l r . and « ( , )  = — .

Sketch the phase spectrum of yi (/) and vt(/).

Solution

-10 -5 0 5 10 -10 -5 0 5 10
/(H z) /(Hz)

8.4 PARSEVAL’S THEOREM

We have introduced in Chapter 2 the concept of average power P  of a 
continuous-time signal and described the average power as expression
2.22. Parseval’s theorem states that if x(t) is a periodic function with 
fundamental period To, then the average power P of the signal is defined 
by

p  = T  [ T°\x(t)\2dt. (8.17)
*o Jo

Applying the Fourier series expansion to the periodic function as

“  i rT0
x ( t )=  Y  X[m]eJmai with X[m] = I x(t )  e ' imai dt, 

nî oo T° Jo

one can write the following relation:

|.r(r)|2 = x(t) x(t) = ^  X[m]ejmSlt x(t) = ^  X[rn]x( t)e jmat.
»=-oo m=-oo
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The average power P is thus expressed as

1 r T° ^
P = — y i X[m]xU)eJma‘ 

ToJo  [„trio

= f Qx(t)e>mShdtmHo [To Jo

Note that the integral at the end of above expression can be substantially 
simplified as

I r To
1 /*
To Jo

x O )e JmSil dt = X*[m).

In other words, we can express the average power of a periodic function 
in terms of the Fourier series coefficients as follows:

00 OO

P = Y j X[m\X*[m]=  £  |X[m ]|2.
m = -oo  m = -oo

(8.18)

Example 8.3 Consider x(t)  shown in Figure 8.4 and derive the 
average power P of the periodic function via expression 8.17.

Solution

=%Cmfd,=!^d,=\-

Example 8.4 Consider x(t)  shown in Figure 8.4 and derive the 
average power P of the periodic function via expression 8.18.
Hint: Refer to expression B.SO.

Solution

X[m] =
[1/2 (m = 0),
\e in,1K2mn) (m * 0) ,
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oo

p =  2  l * M I 2
m = -oo

OO -  CO

= |X[0 ]|2 + £ |X [ m ]|2 + Z  |X |w i]|2
m=  1 w = - l

1 o o  1 - o o  j

4 ^  (2 m n)2 ^  (2m n ) 2
m - 1 m = - I

- 1 + 2  V  — !—  -  I  + J _ V - L - i
4 (2/n7r)2 4 2n-  ¿ - j  m 2 3

m — I m — I

8.5 FOURIER SERIES AND LTI SYSTEMS

In Chapter 5, we have discussed the concept of linear time-invariant (LTI) 
systems (Figure 5.5) and described the input-output relation of an LTI 
system as

y ( t )  = x ( t )  * h(t) ,

where h(t) denotes the impulse response of the LTI system. Assuming a 
complex exponential input function as follows:

we express the output frôiri the LTI system as

y ( t )  =  x( t )  * h( t)  =  [  x ( t  -  t )  h ( r )  dT  =  e iu,(,~T) h(T) dT
J -O O  J - o o

h(r) e~JWT d r j  eJ0J'.

The integral in the last term of the above expression is called thefrequency  
response  of the LTI system. In other words, we define the frequency 
response H(oj) of an LTI system as

OO
h( t )e~jM dt, (8.19)
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gl“' — LTI System — H(co)eJW'

ix [ m ] e jmih
m=-cr. — H(a>) — ¿ A r[m]H(mÇi)e‘̂

m--r

Figure 8.12: Concept of frequency response H(uj)

and establish the following input-output relation:

x{t) = eJojl — > y(f) = H((o)ejw'. (8.20)

Combined with the concept of frequency response, Fourier series 
expansion enables one to conveniently analyze an LTI system. Given the 
frequency response H(u)  of the system, we write the following input- 
output relation:

x(t) = Y  X[m]eJmai — * y(t) = £  X[m] H(mSl) <?'mi\(8 .2 1 )
m- - o o  m = -oo

and associate the Fourier series coefficients as

X[m] — > Y[m] = X[m] H(mCl). (8.22)

The concept of frequency response of an LTI system and its relation with 
the Fourier series is summarized in Figure 8.12.

Example 8.5 Consider an RC circuit shown below.

R

The RC time constant of the circuit is 0.2. Regard the battery ind 
capacitor voltages as the input x(t)  and output y(t)  of the circuit. 
What is the frequency response of the system?
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Solution

Referring expression 5.12, we write the impulse response of 
the LTI system as

The concept of frequency response is useful for understanding an RC 
circuit. Consider, for example, the circuit in Example 8.5. We have studied 
in Chapter 5 that the RC circuit satisfies the input-output relation shown in 
Figure 8.13. Considering that *(r) in Figure 8.13 is an amplitude shifted 
function of *2(0  in Figure 8.1, we express the Fourier series coefficient 
of x(t) as

and .¥[0] = 1/2. Expression 8.22 and Example 8.5 enable one to describe 
the Fourier series coefficient of y(t)  as

and K[0] = 1 /2. Note that the concept of the frequency response greatly 
simplifies the derivation of the Fourier series coefficients Y[m\.  The am­
plitude and phase spectra of the input and output functions in Figure 8.13 
are presented.in Figure 8.J4. Tmocated Fourier series, are.also illustrated 
in Figure 8.15. It is evident that the Fourier series well reconstructs the 
inpu and output functions of the RC circuit.

It has been shown that we can understand the frequency characteristics 
of an LTI system by analyzing the amplitude and phase spectra of the

h(t) = - z p e ' ,IKCu(t) = 5e~*‘«(/), 
a C

and derive the frequency response of the system as follows:

H(cj) = h(t) e~Joj' d t = 5 e“5' u (t ) e~jùJ' dt

= 5

Y[m\ -  X[m] H (m ii) =
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r x
1

!

x(t)

t t

Figure 8.13: Input and output functions of the RC circuit in Example 8.5.
The fundamental period 7o of the two functions are 2, and 
the fundamental frequency i 2 is thus n.

6|--------------■--------------
5
4

3
2

nil

- i r / 2

-10
/(Hz)

10 -10

/(Hz)
10

Figure 8.14: RC circuit and its influence on the amplitude and phase spec­
tra. Gray and black plots are related to x(t) and y(t) in 
Figure 8.13, respectively. The fundamental period To of the 
two functions is 2, and thus the frequency interval A / is 0.5.

( - 1  < m < 1) (-20 <m< 20)

Figure 8.15: Truncated Fourier series that assess input and output func­
tions shown in Figure 8.13. Gray and black plots are related 
to x(t) and y(f), respectively.
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-  7!
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10

Figure 8.16: The amplitude and phase spectrum of the frequency response

input and output functions. There is, in fact, a more convenient approach 
of understanding the frequency characteristics of the system. That is to 
analyze the amplitude and phase spectra of the frequency response itself, 
instead of the input and output functions. In Example 8.5, we have seen 
that the frequency response of the RC circuit is

Denoting the amplitude and phase of the frequency response as |//(w )| 
and 8(a>), respectively, we can show that

The amplitude and phase spectra of the frequency response are shown 
in Figure 8.16. Note that the amplitude and phase spectra are no longer 
represented by.discrete data sets but by continuous functions. Note also 
that the amplitude spectrum shown in Figure 8.16 is a typical of the low 
pass filter. In other, words, the input-output relation .defined by the. battery 
and capacitor voltage of the RC circuit can function as a low pass filter 
More detailed discussion about filters will be presented in Chapters 10 
and 12 .

derived in Example 8.5

and

6(aj) = -  tan 1 ( j )  •
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Consider a periodic signal x(t) whose phase spectrum is shown below.

Chapter 8. PROPERTIES OF FOURIER SERIES

PROBLEMS

T T I I
- 4 - 3 - 2 - 1 0  I 2 3 4

/(H z)

Problem 8.1 Sketch the phase spectrum of y(t) = x (- t ) .

Problem 8.2 Sketch the phase spectrum of y(t) = x(t/2).

Problem 8.3 Sketch the phase spectrum of y(t) = -x( t )  with an assump­
tion that X  [0] = 0.

Problem 8.4 Sketch the phase spectrum of y(t)  = 2x(t).

Problem 8.5 Sketch the phase spectrum of y(t) = x(t  + 0.25).

Problem 8.6 Sketch the phase spectrum of y(t)  = x(t  -  2).

Problem 8.7 Sketch the phase spectrum of y(t)  = dx(t)/dt.

Problem 8.8 Sketch the phase spectrum of y(t) = d 2x{t ) /d t2.

Problem 8.9 Use the Parseval’s theorem and find the average power of 
the following signal:

x(t) = 8 cos(wt) -6 c o s (3 wt) +4cos(5iJf).

Problem 8.10 Find the average power of the following signal: 

x(t) = 3 cos(u>t) -  2 cos(2o>f) + 2cos(5tot).
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PRINCIPLES OF FOURIER TRANSFORM

Chapter 9

Fourier series is a powerful tool for analyzing periodic continuous-time 
signals. It enables one to see frequency content of a periodic function, 
to analyze frequency characteristics of a system, and to design filters 
that remove / strengthen certain frequency components. The application 
of the Fourier series is, however, limited to periodic signals. In many 
occasions, we are forced to handle nonperiodic (or aperiodic) signals, 
and Fourier transform is the solution for those who want to analyze the 
frequency content of a nonperiodic function. Fourier transform is essential 
in analyzing and processing signals in science and engineering, especially 
in medical images, computerized axial tomography (CAT), and magnetic 
resonance imaging (MRI). We thus focus primarily on Fourier transform 
for the rest of this study.

9.1 WHAT IS FOURIER TRANSFORM?

The fundamental idea that connects Fourier series and Fourier transform 
can be summarized in the following statement:

A nonperiodic signal can be regarded a periodic signal 
that has an infinitely long, fundamental period.

In other words, one may simplify the basic idea of Fourier transform as 
follows:

Fourier transform is to do Fourier series analysis with an. 
infinitely small fundamental frequency.

Recall that expressions 7.20 and 7.21 describe Fourier series as

A  „  i r T̂ 2
x<t) = )  X[m]e jma' and X[m)  = -  /  x(t) e~jmiit dt,

m=—oc '0 J-T0/2
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where £2 is the fundamental frequency of a periodic function x(t),  and To 
the fundamental period. Combining the two expressions, we write

Chapter 9. PRINCIPLES OF FOURIER TRANSFORM

jm O t

We also recall that To = In/Q . and modify the above expression as

ejm a,Cl.

Consider now the situation that the fundamental frequency £2 gets infinitely 
small such that

/£2 — ► dto, m il — > oj, n/Sl  — > oo, and Z -

With the above approximation, one may describe x(t)  as

^ > - 5  x(t) e~jwt di] eJ0J' dio.

We then decompose the above expression into the following two expres­
sions:

and

( 9 . 1 )

( 9 . 2 )

Expression 9.1 is the definition of the Fourier transform of x(t),  and 
expression 9.2 defines the inverse Fourier transform of X(u) .  We also ar­
ticulate that x(f) and X(u>) form a Fourier transform pair and symbolically 
denote the relation as

x(t) <=> X ( oj).

It is noteworthy that we have already encountered the following Fourier 
transform pair:

h(t) <=> H(cj),
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where h(t) and H ( cj) represent the impulse response and frequency re­
sponse (expression 8.19) of an LTI system, respectively. In other words, 
the frequency response of an LTI system is. in fact, the Fourier transform 
of the impulse response of the system. Note also that X(w) is, in prin­
ciple, an extension of the Fourier series coefficient X[m], and Fourier 
transform is essentially not different from the process of finding Fourier 
series coefficient. It is thus not surprising that the Fourier transform has 
a lot of properties similar to those of Fourier series, such as the linearity 
and Dirichlet conditions.

Not all functions have Fourier transforms. A time function x(/) has the 
Fourier transform only if it fulfills the Dirichlet conditions summarized 
below (Oppenheim and Willsky, 1997).

1 . x(t)  should be bounded.

2 . x(t)  should have a finite number of maxima and minima within any 
finite interval.

3. x(t)  should have a finite number of discontinuities within any finite 
interval.

4. x(t) should be absolutely integrable, such that

Therefore, absolutely integrable functions that are continuous or discon­
tinuous at only a finite number of locations do have Fourier transforms.

Example 9.1 Find the Fourier transform of the following time func-
tion:

x(t) = kt(t + a ) n ( - t  + «)
= u(t + a) -  u(t - a ) ,

with a > 0 .
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Solution

X ( oj) =  f  x ( t ) e ~ jw' d t =  f  e - j w , d t
J  —c o  J  —a

_ ei aw -  e - iau> _ 2 sin(flo>) 
jot UJ

2,----—

1

0 -----

-P-----
-4 -3

Figure 9.1 :

co co

Figure 9.2: Amplitude and phase spectra of the time function x(t) in Fig­
ure 9.1. Phase spectrum 9(u)  exhibits 0 or ±n values.

Example 9.1 suggests one to write the following Fourier transform 
pair:

2 sin at
x(t) = u(t + 1 ) -  u(t -  1 ) <=> X(a>) = -------- = 2 sinc(a>).

at

Figure 9.1 shows the graphs of the above Fourier transform pair. It is 
obvious that x (/) is an even function of time, and its Fourier transform is

-  8 / r  -  6 / r  -  4 / r  -  2 / r  0  

CO

A Fourier transform pair. x(t)  is an even function of time, and 
X(at) is thus a real function of frequency.
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thus a real function of frequency. Figure 9.2 demonstrates the amplitude 
and phase spectra of the time function ,v( t ). It is clear that the amplitude 
spectrum maintains the even symmetry while the phase spectrum exhibits 
the odd symmetry.

Example 9.2 Find the Fourier transform of the following time func­
tion:

x ( t )  =  sin(/rf) u(t + 1) u ( - t  + I ).

Solution

X ( oj) = f  x ( t ) e ~ joj' d t =  f  sin( n t ) e ~ j c j , d t
J - 00 J - 1

- a
■I f ejnl - e~j*1]

~jw l  d t
2 j

=  J .  | y ' e i(*-u) ' d t - J  l 1 dt

e j( n -o j )  _  e - j ( n - w )  e i(n+<ji) _  e -j(rr+ oj)

2 j 2( n - c j )  2 j 2(n + aj)

_ sin(^ -  oj) sin(7r + at)  

j ( n - u j )  j ( j i  + (o)

_ j  sin(/r + id )  j  sin(^ -  oj)

71 + 0) 71-0)

Figure 9.3 shows the Fourier transform pair derived in Example 9.2. 
It is obvious that 'x ( t ) '  is an odd function of time and its Fourier transform 
is thus an imaginary function of frequency. Figure 9.4 demonstrates the 
amplitude and phase spectra of the time function x ( t ) .  It is clear that the 
amplitude and phase spectra still maintains the even and odd symmetry, 
respectively.
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A
----------- r e a l

-----------i m a g i n a r y

- 4  - 3  - 2  - I  0

t
-  8 / r  -  6 / r  -  An -  I n  0  2  it 4 n  6 n  8 n

03

Figure 9.3: A Fourier transform pair, x( t )  is an odd function of time, and 
X(u>) is thus an imaginary function of frequency.

0(co)

(O

Figure 9.4: Amplitude and phase spectra of the time function x( t )  in Fig­
ure 9.3. Phase spectrum 0(a>) exhibits 0 or ±n/2  values.

Example 9 3  Find the Fourier transform of the following time func­
tion:

x(t) =  e~a'u(t ) ,

with a >  0 .

Solution

X ( cj) = [ ° °  x ( t ) e - ju)‘ dt
J -oo

- f  °° e~al e~jM dt = [ ° °  e~(a+Jw)' dt 
Jo Jo

1

a + j(v
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xjl) '

r i

...
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...
...

...
...

...
.j

ï — «  imaginary

\
% % t. 1! 1 1

-4 -3 - 2 - 1 0  1
I

3 4 -K /t -h . r  -¿ n  -2rr 0  In  4/r 6n  8/r
CO

Figure 9.5: A Fourier transform pair

It

nH 
0

-/r /2 

-x
-  8/r -  6/r -  4;r -  2/r 0 2n  4 /r 6n  8/r

(O

Figure 9.6: Amplitude and phase spectra of the time function * (0  in Fig­
ure 9.5

Example 9.3 enables one to write the following Fourier transform pair: 

x(t) = e~'u(t )  <=> X(uj) = - -lT- ■
1 + JO)

Figure 9.5 shows the graphs of the above Fourier transform pair. It is 
obvious that x(t) is neither an even nor an odd function of time, and 
its Fourier transform is thus a complex function of frequency. It is also 
noteworthy that the real and imaginary parts of X (u>), in fact, correspond 
to the Fourier transforms of the even and odd parts of x(t),  respectively. 
Figure 9.6 demonstrates the amplitude and phase spectra of the time 
function x(t). It is clear that as expected, the amplitude spectrum exhibits 
the even symmetry while the phase spectrum maintains the odd symmetry.

9.2 PROPERTIES OF FOURIER TRANSFORM 

Linearity

We assume that the Fourier transforms of Jt| (/) and *2 ( 0  exist as follows: 

X ,M =  f  x i ( t ) e - j0J' dt and X2(cj) = f  x 2(t) e~jM d t .
J  - O ’ J -CO
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We also assume that y(t) is a linear combination of jti (/) and x2(t) such 
that

Chapter 9. PRINCIPLES OF FOURIER TRANSFORM

Expressions 9.3 and 9.4 demonstrate the linearity of the Fourier transform. 
And the linearity can be extended to a linear combination of an arbitrary 
number of functions.

Time Reversal

We assume that the Fourier transform of x(t)  exists as follow:

y(t) = ax\(t) + bx2(t). (9.3)

The Fourier transform of y{t) then becomes

Y(oj) = (t) e~Jw' dt = | (/) + bx2(t)] e~j0J' dt

x { ( t ) e - JUJ'd t  x 2{t)e~Joj' dt.

and we simplify the above expression as

Y(u)) = aX\{u)  + bX2{u). (9.4)

We also assume that y(t) is the time reversal of x(t)  such that

y(t) = x ( - t ) . (9.5)

The Fourier transform of y(t)  then becomes

Y(u>) = y(r) e~jw' dt = x ( - t )  e~iw' dt.

Substituting r  = - t  and dr  = -d t ,  we write

Y(oj) = -  x (t ) ej0JT dr  = x (t ) eJ0JT dr

and finally express the Fourier transform of y(t) as

Y ( u )  = X(-co). (9.6)
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Time Scaling

We assume that the Fourier transform of x ( t ) exists as follow: 

X (w )=  f  dt.
J  —<

We also assume that y(t)  is the time scaling of.v(f) such that

v(/) =x(at)

with a > 0. The Fourier transform of y(t)  then becomes
/ 00 /• oo

y(t) e~im' dt = /  x(at) e~JUJl dt.
OO J — OO

Substituting t = at and dr  = adt , we write

y'(w) = i  [  x ( t)  e-j“Tla dT
& J—00

and finally express the Fourier transform of v(/) as

Y(a>) = — X(at/a). 
a

Time Shifting

We assume that the Fourier transform of jc(r) exists as follow: 

X (w )=  [  x(t) e -ju ' dt.
J -  OO

We also assume that y(t)  is the time shifting of x(t) such that

y(t) = x(t  -  i0)

with a constant to- The Fourier transform of y(t)  then becomes

Y(io)= f  y( t )e~Jwld t=  f  x(t  -  to) e~J0Jt dt.
J  — oo J —oo

Substituting t = t -  to and dr  = dt, we write

Y(u>)= f  x (t ) e~JUJiT+,o) dr  = e~Jtola f  x ( r ) e ~JUJTdT
J  —CO J —CO

and finally express the Fourier transform of y(t)  as 

Y(io) = e~J'w,,,X(oj).

(9.7)

(9.8)

(9.9)

(9.10)
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Frequency Shifting

We assume that the Fourier transform of x( t ) exists as follows:

X(oj) =  f  x ( t ) e - Joj'dt .
J  — oo

We also assume that y(t) is expressed as

y(t) = x(t) ej0Ja' (9.11)

with a constant ojq. Tf«i Fourier transform of y(t)  then becomes

Y(aj) = f  y(t) e~jw' d t=  f  x(t) eM)l e~jw‘ dt 
J  —OO J -oo

x(t) e-H*-**» dt.- fJ  -C*

and we finally express the Fourier transform of y(t)  as

Y(w ) = X ( uj- u) o). (9.12)

Note that expressions 9.11 and 9.12 demonstrate the frequency shifting 
relation between x(t)  and y(t).

Example 9.4 Use the following Fourier transform pair:

x(t) -  e 1 u(f) <=> X{u)  = T - 7 7 - .
1 + J(l)

and derive Fourier transforms of the following expressions:

yi(f) = e‘u(- t ) . y2(t) = e 1,1,
yi( t)  = e '21 u(t), y4(i) = e24 u(-t ) ,

ys (t) = e - +2u ( t -  2), y6( t ) = eW - l*u(t) .

Solution

yi(r) = jc(-r),

W w )  = X ( - cj)
1

1 -  ja>
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>’2 (0  = e 1 u(t) + e' u ( - t )  = x(t) + x (- t ) .

Y2(w ) = X(a>) + X(-to)  = — = — 2— . .
1 + ja> 1 - j o j  1 + o r

v3(0  = * ( 2 0 .

YA<o) = \  X(u>/2) = ^ = t - V .
2 2 1 +  7 ^ / 2  2 *4- joj

y4(t) = x ( -2 t )  = y 3(- t ) ,

K4M  = * 3 ( - w )  =  '2 -  j w  

>5(0  = x { t -  2 ),

e - 2 ju
Y5(ui) = «T2' "  X(w) =

1 + /a> 

y6( 0  = x(t ) e2Jt,

1
Y6(cj) = X ( oj -  2) =

1 + y (6> - 2 )

Time Differentiation

We assume that the inverse Fourier transform of X(oj) exists as follows:

x(f) = ^ f _ ” x(a>)eJ“, d(o.

We also assume that y(t)  is the time differentiation o f  x(t )  such that

3,(0 = (9.13)
a$

Note that expression 9.13 becomes

y(t)  = ^  J  ju)X(w) eJWI du>,
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which implies that y(t)  is the inverse Fourier transform of jtoX(cu). In 
other words, jojX(tj )  is the Fourier transform of y(t)  such that

Y(cj) = juX(uj ) .  (9.14)

Duality

We assume a Fourier transform pair that is described as follow:

*(f) <=> X(b>). (9.15)

Time function x(t)  is then expressed as the inverse Fourier transform of 
X(oj) such that

jc(r) = f  X{oj) ejo)l dio.2.71 J  _oo
Substituting t with - t ,  we rewrite the above expression as

X(a>) e~Jwl da>.

And interchanging the two variables t and a> yields

X(t) e - ^ ' d t .

The above expression means that the ’’frequency” function 2nx(-u>) is the 
Fourier transform of the ’’time” function X(t).  One can therefore write 
the following Fourier transform pair:

X(t)  o  2nx(-w ). (9.16)

Expressions 9.15 and 9.16 manifest that Fourier transform pairs are ’’almost 
symmetric”, and we call the semi-symmetric nature the duality of Fourier 
transform. An example o f the duality will be soon presented in terms of 
the Fourier transform of the unit impulse function.

9.3 FOURIER TRANSFORM OF SPECIAL FUNCTIONS

9.3.1 Fourier Transform of Unit Impulse Function

Fourier transform is a versatile tool that can even enable one to discuss the 
frequency contents of the singularity functions. The Fourier transforms of

Chapter 9. PRINCIPLES OF FOURIER TRANSFORM

2nx(

2 n x ( - t )  = f 
J —i
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the unit impulse functions are of our special interest. Consider the Fourier 
transform of x(t)  = 6(t -  to) as follows:

It is evident that the sifting property of the impulse function (expression 
1.6) simplifies the above expression as X (w ) = e~JW,°. In other words, 
one may write the following Fourier transform pair:

and express 6(t -  to) as the inverse Fourier transform of e ■,a"° such that

1 •
H t - t 0) = —  e ^ ' - ' a)du). (9.18)

2Jt

It is noteworthy that expression 9.18 is, in fact, the most rigorous way of 
defining the impulse functions.

Consider now a special case of expression 9.17. Assigning to = 0 
yields

which implies that the Fourier transform of 6(t) is just 1. It may look 
trivial, but expression 9.19 has an important physical implication that 
the impulsive excitation at t = 0 contains ’’every” frequency components 
and each different frequency component is of equal significance (constant 
amplitude spectrum). Consider also Fourier transforming x(t) = 1 as 
follows:

Note that the above integration is impossible to evaluate without introduc­
ing impulse function. We thus recall the duality of the Fourier transform 
(expressions 9.15 and 9.16) and write the following Fourier transform pair:

The duality of expressions 9.19 and 9.20 are summarized in Figure 9.7. 
The duality of the Fourier transform can be also applied to expression 9.17 
such that

X (w )=  x ( t ) e - j“‘ d t=  d U - t n ) e ~ Ju,dt.

S(t - 10) <=> e~Jula (9.17)

S(t) <=> 1 , (9.19)

1 o  2n6(-uj) = 2k6(oj). (9.20)

e  M ) f  0  2 n 6 ( - u >  -  a>o) =  2 k 6 ( u j  +  o jq ) . (9.21)
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x(t) X(co)
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1 o
-*t ->  (0

X(t)
A

l

Ikx( - co) 
^2 n

o
~>t

Figure 9.7: An example of the duality of the Fourier transform

Note that applying the frequency shifting property to expression 9.20 also 
yields expression 9.21.

Example 9.5 Use the time differentiation property (expressions 9.13 
and 9.14) and derive the Fourier transform of x(t)  shown below.

x(t)

/ \

- 4 - 3 - 2 - 1 0 1 2 3 4  
t

Solution

We sketch time derivatives ofx( t )  and derive X(a>) as follows. 

y(t)= x\t) z(t)=y'(t)

-2

n u
- 4 - 3 - 2 - 1 0  I 2 3 4

I

2

I
0

-I
-2 1-

1 T
-3 - 2 - 1 0  I 

I
3 4
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: ( /)  = 6(t + 2) - 6 { t  + 1) -  Sit -  1 i + 6(t  - 2 ) ,  

Z(u>) = e2jw -  e>w -  e~JW + r 2'"

= 2 [cos(2a>) -  cos(w)],

-J 2 jl !£> 
d r- •

Z(o») = 0 'w)2X(o»),

Z(w) cos(w) -  cos(2w)
= ------=- = 2 ------------,----------.

oj a>-

Example 9.6 Use the time differentiation property (expressions 9.13 
and 9.14) and derive the Fourier transform of x(t)  shown below.

x(t)

V

'-2 - 1 0 1  2 3 4
t

Solution

We sketch time derivatives of jc(i) and derive X(u>) as follows. 

y(t) = x'(t) z(t) = y'2(t)

y,C) , k
r r r ,

~ J * ( f )

-2 -1 1 2  3 4
t

2
I
0

-1

-2 Jr

1

- 2 - 1 0 1 2 3  
t
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y(t) =x'( t)  = yi( t )  + y2(t) 

z(t) =y'2(t) = -6( t )  + 6 ( t -  1 ),

Z(w) = - 1  +e-Jw = ( j u ) Y 2(<o),

- 1  + e~jLJ 
Y2(oj) = ----- :------ ,JCJ

y(f) =S(t) + y2(t),

Y(cj) = 1 + Y2(cj) = 1 + ~ i + e  J<" = {jot) X (u) ,
ju>

1 1 -  e~ju
X(to) = —  +

ju> to-2

Examples 9.S and 9.6 show that combined with the Fourier transform 
of the impulse function, time differentiation property can ease deriving 
Fourier transform of complex time functions. Note, however, that we 
should be cautious to follow the aforementioned process if the time func­
tion x(t)  contains a DC component. As long as x(t)  has no DC component, 
it is safe to follow the process. The unit step function is a good example 
of a time function that contains a DC component.

9 3 .2  Fourier Transform of Unit Step Function

The unit step function u(t) has a DC component, and one can quickly 
verify the existence of a DC component by evaluating the even part of the 
function. The even part of the unit step function ue(t) is 

„ ,« )  = = >, 

and we thus express the unit step function as 

« ( 0  = ^  + u0(t),

where ua(t) is the odd part of the unit step function. Figure 9.8 show; the 
even and odd parts of the unit step function, and it is obvious that the unit
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Figure 9.8: Unit step function and its geometric analysis

step function contains a DC component. The Fourier transform of u0(t) 
is derived as follows:

93.3  Fourier Transform of Sinusoidal Functions

The Fourier transform has originated from-an effort to expand the do­
main of Fourier series from the periodic functions to nonperiodic ones. 
The application o f Fourier transform is, however, not limited to nonperi­
odic functions. One can express the Fourier transform of, for example, 
sinusoidal functions. We know cosine functions are expressed as

u(t) <=> n S ( u )  + — .
j u

(9.22)

cos(a»oO =
g ju o t  +  e - j m t

2
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and expression 9.21 allows one to write the Fourier transform of the above 
expression as

2n 6 (< jj -  ojq) +  2 n 6 ( u  +  w q )

Chapter 9. PRINCIPLES OF FOURIER TRANSFORM

We can thus derive the following Fourier transform pair: 

cos(o»oO <=> n [6{w + ioq) + 6(io -  ujo)]. 

Similarly, one can express sine functions as

gjwol _ e~jw)t

(9.2?)

sin(a»oi) =
2j

utilize expression 9.21 to get the Fourier transform of sine functions as 

2 n 6 ( o j  -  o io ) -  2 n 6 ( c j  +  a»o)

V  *
and finally write the following Fourier transform pair:

sin(a>oO <=> jn[6((o + tJo)-6(a)-a>o)].  (9.24)

x(t) = cos(2 nt) Re[A'(<o)]

\  A A / \  A  A  /
V V V V v v

1 1

- 3 - 2 - 1 0 1 2 3
t

-6it -4n -lit 0 2k An bn 
CO

Figure 9.9: A cosine function and its Fourier transform

Figures 9.9 and 9.10 show examples of Fourier transforming cosine and 
sine functions. It is evident that the Fourier transforms of cosine functions 
have only real parts and those real parts exhibit even symmetry. On the 
other hand, Fourier transforming sine functions yield only imaginary parts 
and those imaginary parts maintain odd symmetry.
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Figure 9.10: A sine function and it Fourier transform 

9.4 PARSEVAL’S THEOREM

We have argued in Chapter 2 that the total energy £  of a continuous-time 
signal is defined as

E =  f  \x(t)\2dt. (9.25)
J  — OO

One may use the following expressions:

= f  X(a))ej0J' d u  and X(w) = /  jc( t)e~j(0,dt27r J  _oo J  —oo
and describe the total energy as

E = y  \x(t)\2dt = J  x(t )x*( t)  dt

- j O l i j O ' H *

- r j y ^ [ /> « - * ■ *

= i / >

da>

‘(ùj)X(ùj) du.

In other words, the total energy E  can be expressed as

E = ± f ^ \ X { c o ) \ 2da>. (9.26)

The above expression is called the Parseval’s theorem. Parseval’s theorem 
states the relationship between energy in the time and frequency domains, 
and the theorem plays a significant role in communications and signal 
processing.
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9.5 SUMMARY

Several important properties of the Fourier transform are summarized in 
Table 9.1. Time convolution and frequency convolution properties will 
be discussed in Chapter 10. Fourier transform pairs of several common 
functions are also summarized in Table 9.2.

Table 9.1: Properties of Fourier transform

Property x(t) X(io)

Linearity ax\( t)  + bx2(t) aX \ (u )  + bX2(oj)

Time Reversal x ( - t ) X ( - oj)

Time Scaling x  (at) ¡ ix ( W * >

Time Shifting x( t  - 10) e-1** X ( oj)

Frequency Shifting eJwotx(t) X{m -  a>o)

Time Differentiation
dx(t) 

dt
jcoX (oj)

Duality X(t) 2 nx(-a))

Time convolution Xl ( 0  * x 2(t) X i (oj) X 2(cj)

Frequency convolution *1 (0 *2 ( 0 ± X i (cj) * X 2(oj)

194



561

yo + z(mf + o) 
0(0(;)n(/Of77)uis w_3

Oro + Z{(of+D)
mt + V

(j)n (j0r))soo w_9

[(Ofjj _ (I))ọ - (Om + (0)g]uf(;0r>?)uis

[(Ofï? - O})g + (Ofl) + (T))g] il(jO(tj)sod

I+kK + o) 
¡«

0)" 'V-9 ul

(ODpr0)n w-*\l\

Z(0+ZD

°z\i\o-*

mí - o 
I

(/-)« ws

a)f +D

I
(*)n,o-3

m
(<r>v)u\sz

(o - t)n - (o + i)n

fot
— + (m)gjí(/)»

(0 Oí + (0)çuilOtnf-3

I) Itryf-*(0Ị - l)ọ

(Ol)ÇltZ1

IU)ọ

im) XU)x

sjjnd UUOJSUTUJ jaunoj■Z 6 3iq»lL



Chapter 9. PRINCIPLES OF FOURIER TRANSFORM

PROBLEMS

Problem 9.1 Fourier transform of a time signal x(t)  is given as

x ^ - n h -

Which of the following is correct? Choose one.

9
a. y(f) = x( t )e-3jl <=>

b. y ( t ) = x { t  + 3) <=>

c. y ( t )= x( t /3 ) <=>

d. y(f) =x{-3 t ) <=> l'(o») =

9 + (w + 3)2
9 £-3 y w

9 + OJ2 
3

9 + (cc*/3)2 
-3

9 + (w /3)2

Problem 9.2 Fourier transform of a time signal jc(r) is given as 

Which of the following is correct? Choose one.

9
a. y(f) = x(t)e3Jt <=>

b. y ( 0  =Jt(i-3) <=>

c. y ( t ) = x ( t /3)

d. y(/)=Jt(-3i) <=> J 'M  =

9 + (o> + 3)2

9 e3j0J
9 + io2 

3
9 + (3a .)2 

3
9 + (w /3)2

Problem 9.3 Consider time signals shown below. 

196



m

i
K yU)

N
•'! I. ------ 1—  - _t
~-3 - 2 - 1 0 1 2 3  ‘ -3
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The Fourier transform of x(t)  is given as

1 1 -  e - i"
x (/) <=> X(io) - —  + ------ —̂ .

JOJ io~

Derive the Fourier transform of y(t).

Problem 9.4 Consider time signals shown below.

- 1 0  1 2  3
t

«M
\ \

- 3 - 2 - 1 0 1 2 3  - 3 - 2 - 1 0 1 2 3
/ t

Use the Fourier transform pair given in Problem 9.3 and derive the Fourier 
transform of y(r).

Problem 9.5 Consider timé signáis shown below.

4 0

1

><0

1 1

- 4 - 3  -2 -1 0 1 2 3 4 -4 -3 -2 - 1 0  1 2 3 4
t f

The Fourier transform of x(t)  is given as 

x(t)  <=> X(oj) =
2 sino;

to
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Derive the Fourier transform of y(t).

Problem 9.6 Use the following property: 
dy(t)

dt
<=> jtoY (oj).

and derive the Fourier transform of y(t)  shown in Problem 9.5.

Problem 9.7 Use the following definition:

Y(u)  = f  y ( t ) e - ^ d t ,
J —oo

and derive the Fourier transform of y(t)  shown in Problem 9.5. 

Problem 9.8 Consider time signals shown below.

A t)
AO

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2  3 4
t t

The Fourier transform of x(t)  is given as 

x(t) <=> X ( oj) = 

Derive the Fourier transform of y(f).

2  sin to
a>

Problem 9.9 Use the following property: 
dy(t)

dt
<=> j 'o jY ( o j ) ,

and derive the Fourier transform of y(t)  shown in Problem 9.8.

Problem 9.10 Use the following definition:

Y(ui) = f  y (t)e - ju,dt,
J  —oo

and derive the Fourier transform of y{t) shown in Problem 9.8. 
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Chapter 10

FOURIER TRANSFORM AND LTI 
SYSTEMS

10.1 CONVOLUTION PROPERTIES

Assume that y(t)  is the convolution of two continuous-time functions 
.t| (r) and x2(t):

y(t) = x l ( t ) * x 2(t). ( 10 .1 )

Assume also that x\( t)  and JC2 (/) have Fourier transforms. We then express 
the Fourier transform of y(t)  as

Y(oj) = f  y(t) e~JU>l dt = f x\(t)  * x2(t) e~jo>l dt
J - o o  J -o o

= /" "  [ f° °  x \ (t ) x 2{t -  t) dr
J  — OO I  J —oo

= r  x x( r ) \ r  x2( t - T ) e - ^ d t
J —OO I J —OO

e~JU>l d t

d r .

Substituting £ = t  - t ,  r = £ + r , and d t  = d ( ,  we rewrite y(a>) as 

Y(a>)= r Xi( t )  \  r x 2( O e - jM(+T)d i  dr
J —OO I J —oo

=  f x \ ( t ) e~i0)TdT f x2(Oe~Ju(d i,
J —oo J -OO

and finally express the Fourier transform of y( t )  as

y iio )  = XA(oj)X2̂ ) ,  ( 1 0 .2 )

The above expression means that Fourier transforming the convolution 
o f two time functions is to take the product of their each correspond­
ing Fourier transforms. Expressions 10.1 and 10.2 are called the time 
convolution property of Fourier transform.



Motivated by the duality of Fourier transform, one may also consider 
Fourier transforming the product of two time functions such that

y(t) = x i ( t ) x 2(t), (10.3)

and

Y(a>) = f  y(t )e~jw,d t=  f x i ( t ) x 2(t) e~Jto' dt.
J - oo  J —oo

Denoting x \ (t ) as the inverse Fourier transform of X\ (/;) yields

Chapter 10. FOURIER TRANSFORM AND LTI SYSTEMS

x2(f) e-jwl dt.

Note that while representing the inverse Fourier transform, another fre­
quency variable rj should be used to make distinction from the frequency 
variable oj, because rj and at may vary independently from each other. One 
can then rewrite Y(u>) as

Y(oj) = ^ f _ C° X \ W  [f_°°x2( t ) e - j ^ ,dt dr]

Xi(ti)X2((jJ -  T)) drj,

and finally express the Fourier transform of y(t)  as

Y(cj) = ^ X 1(oj) * X 2(oj). (10.4)

Expressions 10.3 and 10.4 represent the frequency convolution property 
of the Fourier transform.

In many occasions, convolution properties of Fourier transform allows 
one to avoid handling tough convolution problems and to find an alternative 
route of acquiring solutions. And, as a result of that, Fourier transform 
plays a significant role for analyzing LTI systems.

10.2 FREQUENCY RESPONSE OF LTI SYSTEMS

We have studied in Chapter 5 that for an LTI system, the input signal x(r) 
and output signal y(t) are associated as

y ( t ) = x ( t ) * h ( t ) ,
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__ LTI System
' ’ h(t)

y ,  „ LTI System X{<o) - >  H ’a) —► Y((o) = X{(o)H(co)

Figure 10.1: Time domain and frequency domain representations of an 
LTI system

where h(t) denotes the impulse response of the system. Applying the time 
convolution property of Fourier transform to the above expression results 
in

where H(cj) is the frequency response of the LTI system. The frequency 
response is derived by the Fourier transform of the impulse response such 
that

Representing characteristics of a system via frequency response eases 
associating input and output signals of complicated interconnected systems. 
Consider, for example, interconnected systems depicted in Figure 10.2. 
Input-output relations of the interconnected systems are expressed as

It is obvious that representing input-output relation is simpler without 
convolution.

Example 10.1 Use the following definition of the frequency response:

Y(oj) = X((u) H(io), (10.5)

(10.6)

1 'iM  = X(oj) H \ ( oj) H 2{<jj),

Y2((o)=X(ut)[H\(v).+fl2(v)].

y3(w) = X ( oj) H x(w ) [H2(u>) + Hi(io)], 

Yi{o>) = X ( oj) [Hdw) H2(oj) + H3(oj)].
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X ( w ) ------- » //,(<»)-------* H ^ w ) ------->Yt((o)

X(co)
Hx(co)

4
»¿CO)

X(o>)
*  ----- n

HAw)

X(w)
H x( m )---- » H 2(co) — n

------- J / / 3(û>)|-------------J

Figure 10.2: Interconnected systems

and derive the frequency response of the feedback system shown bebw.

X(o>) O - -+Y(a>)

H2(a>)

Solution

G(a) _
Ht(o)). ti

H^û))

-+Y(a>)

Denoting the input to system-1 as G(a>), we describe G(oj) as 

G(cj) = X ( w ) - Y ( ( o)H 2(o>).
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We also associate G(u>) with the output from the system as

K(o>) = G(a>) H\(<jj).

Combining the above two expressions yields

Y(oj) = X(co) - Y(io) H2(io) H\(u),

Y(u) [ 1 + H2(oj) Hi («)] = X (oj) Hi (oj).

And we express the frequency response as

H(  » i N
KU}) X(u) 1 +H2((d)H i (uj) '

Note that Example 10.1 exemplifies negative feedback systems. Pos­
itive feedback systems may cause system instability and are thus less 
common than negative feedback systems.

Example 10.2 Derive the frequency responses o f  LTI systems the 
following differential equations represent:

f M ) , . 5 k W  = M > + , 2(, k  

^ i ) +2fei£)+w(()=«<«».

Solution

Fourier transforming the differential equations yields 

j - Y i M  + Y i M ^ X r t u ) ,  

joj Y2(oj) + 5Y2(oj) = jo) X2(oj) + X2{o)),

(joj)2 Y3(oj) +j2a> Y3(w ) + Y3(cj) = X j (cj).
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The frequency responses are thus expressed as

Yi (oj) 5
H , (« )  = 

H2(co) =

X\(cj) 5 + j o j ’
Y2(oj) 1 + j(o
^ 2(0») 5 + j o '

, _  y3M  _ 1
3 w x 3(w) ( l + y ^ ) 2 '

Note that frequency response / / 1  (w) in Example 10.2 has been already 
derived in Example 8.5. The derivation was based on the impulse response 
of an RC circuit, which we had discussed in Chapter 5. Compared to the 
hardship one has to endure while deriving the frequency response via 
time domain study, it is surprisingly straightforward to derive the same 
frequency response in the frequency domain. This favorable aspect of 
the frequency domain analysis strongly motivates one to study Fourier 
transform. We should note, however, that to fully enjoy the advantage of 
the frequency domain analysis, it is necessary to verify one more remaining 
hurdle. And the hurdle is the inverse Fourier transform.

103 INVERSE FOURIER TRANSFORM

Problems in 
time domain

Fourier Transform

Hard

Solutions in 
time domain

Problems in 
frequency domain

Easy

Solutions in 
frequency domain

Inverse Fourier transform 

Figure 10.3: Forward and inverse Fourier transform
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Figure 10.3 illustrates a workflow one frequently encounters. Having 
a challenging problem in time domain, one diverts into the frequency 
domain via the Fourier transform, solve the probhem in the frequency 
domain, and finally return to the time domain viai the inverse Fourier 
transform. In general, we use expression 9.2 to find the inverse Fourier 
transform of X ( oj). Quite often, however, X(cj) is in the form of a rational 
function. And, in such a situation, we perform a partial fraction expansion 
of X(u)) and find the corresponding time domain signals x(r) by referring 
to Fourier transform pairs that have already been identified (Table 9.2). 
Furthermore, we frequently need to utilize properties; of Fourier transform 
to ease the process of finding inverse Fourier transforms (Table 9.1).

Example 10.3 Find the inverse Fourier transform of

H( oj) = —
5 + j u

Solution

h(t) = 5 e-5,u(t).

Example 10.4 Find the inverse Fourier transform of

5 + jio

Solution

5 + j i o - 4  4
H ( u > )  =  ------— — ;---------- = 1  ---   --------7 * " r

5 + joj 5 +jio

h(t)  = S(t) -  4e~5' u(t).
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Example 10.5 Find the inverse Fourier transform of

H(<o) = ■■■
(1 +JÙJ)2

Solution

h(t) = te~' u{t).

Example 10.6 Find the inverse Fourier transform of

H M  - 1 +JOJ

Solution

. 2  + j 2 o ) - 2  2
H(io) = — ----- = 2 -

1 + jio 1 + jc j '

h(t) = 2 6 ( t ) - 2 e - ‘ u(t).

Another approach is to use the time differentiation property as follows:

H((o)= j ( jG( io )> G(o>)= 2
1 + jo j' 

g(t) = 2 e -u ( t ) ,

h(t) = = -2e~ ' u (t) + 2e~‘
dt dt

= -2e~ ' u(t) + 2e~' S(t) 

= -2e~' u(t) + 2S(t).
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Example 10.7 Find the inverse Fourier transform of

e~j2io
H((o) =

1 + jcj  

Solution

H(oj) = e-J2wG(Lj), G(ai) =
1 + jc j '

g(t) = e~‘u(t), h(t) = g(t -  2) = e~{,~2)u(t -  2 ).

Example 10.8 Find the inverse Fourier transform of

l + j i o  + 2j

Solution

H( oj) = ----- ~ l - =G(u)  + 2), G(a>) = _ 1
l + j ( a >  + 2)  ’ 1 + joj’

g ( t )  =  - e - ' u ( 0 ,  h ( t )  =  e - V ' g i t )  =  - e ' " + 2j ) 'u ( t ) .

Example 10.9 Find the inverse Fourier transform of

Y(oJ) = - ■ ------- .
V '  ( 2 - j (o)(3 + j u )

Solution

j lOw A B
^  (2 -  j(u)(3 + joj) 2 -  joj  + 3 + j(o '
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Example 10.10 Find the inverse Fourier transform of

= r r ^ r ------ 2 '6  +  j  5oj -  i i r

Solution

. = 5 = 5 = A B
10 6 + j5o> + (ju>)2 (2 + jio)(3  + jcj) 2 + j w  + 3 + j<o'

13A + 2fi = 5, IA = 5,
A + B = 0, ^  IB  = -5 ,

2 + j c j  3 + j ( o  

y(t) = S e ^ u ^ t )  -  5e~3,u(t).

10.4 APPLICATIONS

Fourier transform is extensively used in a variety of fields that include 
optics, spectroscopy, acoustics, geophysics, and electrical engineering. In
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electrical engineering, it is applied in circuit analysis, communications 
systems, signal processing, and so on. We discuss three application areas: 
circuit analysis, filtering, and amplitude modulation (AM). Readers who 
are unfamiliar with these topics are suggested to refer to Alexander and 
Sadiku (2016) or Gilibisco and Monk (2016).

10.4.1 Circuit Analysis

Resistor Capacitor Inductor

— w —  — i b -  — w —

Figure 10.4: Elements of electric circuit

While analyzing circuits, we frequently assume sinusoidal excitation 
and apply the phasor technique (Cheng 1989; Sadiku 2018). For example, 
Ohm's law is written as

V(to) = I(oj)Z(to), (10.7)

where V(io) and I (to) represent sinusoidal variations (that vary with «•'“") 
of the voltage and current, respectively, and Z(a>) is the impedance. With 
the phasor technique, the impedances of resistors, capacitors, and induc­
tors are described as

ZR = R, Zc = — , and Z( = jtoL , (10.8)
ja>C

where R, C, and L represent resistance, capacitance, and inductance, 
respectively.

Applying Fourier transform to circuit analysis is to generalize the 
phasor technique. It involves three steps. We first transform the circuit 
elements into frequency domain and take the Fourier transform of the 
excitation. Next, we apply circuit techniques such as Kirchhoff’s-voltage 
law and Kirchhoff’s current law to find the unknown response (current 
o r voltage). And we finally take the inverse Fourier transform to- get- 
the response in the time domain. We should note, however, that Fourier 
analysis cannot handle circuits with initial conditions. In other words, we 
only consider circuits that satisfy zero initial conditions.
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Example 10.11 Consider the circuit shown below.

f V ( 0  C _ > )
R = 2il 
C = 0.5F

The input current to the circuit is given as

x ( f ) = i ' , ( r ) =  10e~2'u(r) A.

Derive the output voltage at the capacitor: y(t)  = vc (r).

Solution
10

2 +jut '

1 2
ZR — R — 2, Zc — — — — — .

ja>C jot

Current that flows to the capacitor is then described as

Ic(oj) =
10 10jot

ZR + ZC  ̂ 2 + 2 / ( 70») 2 + jot (1 + j'oj) ( 2  + jot)

Output voltage thus becomes

Vc(ot) = /c(w) Zc = - : = t~ A—  + ,
(1+yo»)(2 + -/£i») 1+yo» 2 + j o j

I 2j4 + Ä = 2 0 , 
A + 5  = 0,

A = 20, 
fi = -20,

,  2 0  2 0V cM  = ——----- ,
1 + yw 2 + j o j

y(t) = vr (/) = 20 [e_l -  e~2‘] u(t) V.
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Example 10.12 Consider the circuit shown below.

The input voltage to the circuit is given as

*(r) = vs(t) = 4 e~' u(t) V.

Derive the output current at the inductor: y(t) = i L(t).

S o l u t i o n

Zr\ — /?| — 1, Zr2 — ^2 “ 1» — JWL — jOJ.

Total impedance Z  of the circuit is derived as

r, ^  . Zn ZL , . jut l + j2oj
~~ **R\ + ~ ry 1 . ”  1 .Z/f2 + ZL l+y&>

The current through the first resistor becomes

and thus the output current is

4  A B
(1 + j(v)(l  + j2u>) 1 + j o j + l+j2a>'
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10.4.2 Filtering

Low pass filter (LPF)

A

High pass filter (HPF)
\H(a>)\

A

CO

Band pass filter (BPF) 
\H(a>)\

Band stop filter (BSF)

-*■ 01 <yo o

Figure 10.5: Concept of filters

Filters are frequency selective devices, and we design filters to pass 
signals that contain desired frequency components and block or attenuate 
others. Fourier analysis of an input signal is thus essential for the filtering 
process. Figure 10.5 illustrates four types of filters.

• Low pass filters (LPF) pass low frequency components and block 
high frequency components.

• High pass filters (HPF) pass high frequency components and Hock 
low frequency components.

• Band pass filters (BPF) pass frequency components within i fre­
quency band and block frequency components outside the bard.
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• Band stop filters (BSF) pass frequency components outside a fre­
quency band and block frequency components within the band.

Note that while discussing high or lotV frequency, the sign of frequency 
does not matter, and we only consideHheabsoWte value of frequency. Note 
also that all the filters illustratedan Figure ).0.,5 maintain.ev^p sy/jjrfl^tries 
as functions of frequency.

The RC circuit shown in Figure 10.6 is a typical ofthe LPF. Taking the 
source voltage vs(t) and capacitor voltage \\ (t) as the inputx(t)  and output 
y(t) signals, respectively, we derive tfie followingxli^rential equation:

R C ^ P -  + y(t)= x{t) .  
dt

The frequency response of the RC circuit is, therefore,

h (o>) = 1 m m
1 + jojRC

Figure 10.7 shows the amplitude and phase spectra of the frequency re­
sponse H(a>) one may find with an assumption that the RC time constant 
is 1 second.

Figure 10.6: An RC circuit whose RC time constant is 1 second

Figure 10.7: Frequency response of the RC circuit shown in Figure 10.6
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ft'gUfeTtXS. ÄhTfL circuit wnosë'K'L time constant is 1 second
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i Figflre 10.9: Frequency response of the RL circuit shown in Figure 10.8

A typical HPF is the RL circuit shown in Figure 10.8. Taking the 
source voltage vs(t) and inductor voltage vL (t) as the input jc(/) and output 
y(t) signals, respectively, we derive the following differential equation:

dt L dt  ‘

The frequency response of the RL circuit is, therefore,

jw L
H (oj) =

R + jo)L
(10.10)

Figure 10.9 shows the amplitude and phase spectra of the frequency re­
sponse one may find with an assumption that the RL time constant 
is 1 second.

The above two circuits exemplify continuous-time filters. Filters are, 
however, not limited to processing continuous-time signals. To the con­
trary, filters are extensively used for processing discrete-time signals as 
well. Regardless of the type of signals, however, underlying principles 
of filters are identical. An example of applying a BPF to a discrete-time 
signal will be presented in Chapter 12.
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10.4.3 Amplitude Modulation

In electronics and telecommunications, modulation is the process of vary­
ing one or more properties of a periodic waveform (called the carrier 
signal) with a modulating signal that typically contains information to be 
transmitted. Demodulation, on the other hand, is to extract the original 
information-bearing signal from a carrier wave. Most radio systems in the 
20th century used amplitude modulation ( AM ) or frequency modulation 
(FM) for radio broadcast.

Amplitude modulation is a process that we let modulating signals 
control the amplitude of the carrier. Consider an information signal x(r) 
and high frequency carrier signal c(r) = COS(o>o0- Amplitude modulated 
signal y ( t ) is expressed in the time domain as

y ( t )= x( t)c ( t ) .

Recalling the frequency convolution property of Fourier transform, we 
express the modulated signal in the frequency domain as

Y{(jj) = X(oj) * C(a>) = ^ Xịa>) * [ổịco + (jüo) + ỗ(a> -  o»o)]
2 n 2

= — [X (ùJ + ù)o) + X (oj — 0Jq)] . (10.11)

In other words, the amplitude modulation results in shifting the spectrum 
of the original signal.

Information Signal Amplitude Modulated Signal

Carrier Signal Frequency Modulated Slghal

demodulation

Figure 10.10: Concept of modulation

215



Chapter 10. FOURIER TRANSFORM AND LTI SYSTEMS

/
to) I

c

/
y)|

r~U
- « 0  C 

|Z (

m  r i

co0

!W)|

I 1----- 1 j
-2co0 C

r

2 coa

tw)|

1 ,

-o>0

|C( 

Î 1

----------- L —>
) ^0 

to) |

Î ,

-< y0

|LPI

) «0 

J® )l 

— ------------- ^

(O

b)

Figure 10.11: Principle of amplitude modulation

At the receiving end of the transmission, the audio information is 
recovered from the modulated carrier by demodulation that shifts back 
the message spectrum to its original low frequency location. Consider, for 
example, multiplying c(t) = cos(ajot) once again to the modulated signal 
y(t)  to get the shifted-back signal z(t)  such that

z (0  = > ( 0  c(t).

In frequency domain, the shifted-back signal is expressed as

1
Z(to) — — [Y(o)  +  6>o) + Y{o) — too)]

= — X(a> + 2a>o) + ~ X(u>) + — X (lj — 2ojq). 
4 2 4

(10.12)

Finally, letting z(t) pass through a low pass filter recovers a copy of the 
original information signal. The principle of the amplitude modulation is 
summarized in Figure 10.11.
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PROBLEMS

Problem 10.1 Find the inverse Fourier transform of

Aja)
H(üj) =

2 + ja)'

Problem 10.2 Find the inverse Fourier transform of

2 ja»
H(ü)) =

3 + ja)'

Problem 10.3 Sketch x(t)  whose Fourier transform is

6sin(4w)
X (oj) =

<o

Problem 10.4 Sketch jc(i) whose Fourier transform is

4
X ( üj) = 1 + ja)

Problem 10.5 A continuous-time linear system is described as 

* £ l + 3 y ( t ) = x ( t ) .

Find the output y(t)  due to the input x(t)  = e~2'u(t).

Problem 10.6 A continuous-time linear system is described as

dy(t)
- ^ -  + y ( t )= x ( t ) .

Find :he output y(t)  due to the input x(t) = e~3'u(t).

Problem 10.7 Consider the circuit shown below. The input current is 
given as is(r) = 8e~'u(t) A. Find the output voltage vc(i) from the circuit.
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r , = r2 = in
C= IF

Problem 10.8 Consider the circuit shown below. The input voltage is 
given as vs(r) = 8e~'u(t) V. Find the output current ic(t) from the circuit.

C = IF

Problem 10.9 Sketch the amplitude spectrum of a low pass filter. 

Problem 10.10 Sketch the amplitude spectrum of a band stop filter.
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Chapter 11

FOURIER TRANSFORM OF DT SIGNALS

We have studied that Fourier analysis is a powerful tool of analyzing 
frequency content of continuous-time signals (Fourier series for periodic 
functions and Fourier transform for nonperiodic functions). The Fourier 
analysis also enables one to discuss frequency content of discrete-time 
signals (discrete-time Fourier transform (DTFT) for nonperiodic sequences 
and discrete Fourier transform (DFT) for periodic sequences). In Chapter 
11, we outline the concept and properties of DTFT and DFT. For more 
detailed discussion about the Fourier analysis of discrete-time signals, 
readers can refer to other literature that includes Oppenheim and Willsky 
(1997), Oppenheim and Schafer (2010), and Lathi and Green (2017).

11.1 DISCRETE-TIME FOURIER TRANSFORM

11.1.1 Concept of Discrete-time Fourier Transform

The Fourier transform of a continuous-time signal x(t) is defined as

Having a discrete-time signal jc[n] instead of a continuous-time signal, one 
may rely on a logical reasoning and implement the following transform:

The nature of X  (tot) is not clear yet. However, as was argued in Chapter 2, 
the frequency function X (oj) must be periodic in frequency domain such 
that

oo

( 11.1)

oo 00

X(w + 2tr) = Y  e ^ {u» 2n)n = £  X[n] e- j^ n ■g-'jlnn

= £  x[n \e -J“n = X(co).
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In other words, we may regard X (at) as a periodic function of frequency 
that repeats itself at every 2n  increase/decrease of angular frequency. We 
can thus write

X (oj) = X (oj + 2nk), (11.2)

where k is an integer.

Now, we further recall that a periodic time function *(/) with funda­
mental period 7o is expressed as

X(t)=  £  X [m ]ejma‘,
m =-oo

where the fundamental frequency A is 2n/To, and the Fourier series coef­
ficient X[m ] is

1 rTo/2 ^
X[m] = -  /  x ( t ) e - 'mSitdt.

1 0  J - T o / 2

Considering that we may safely take opposite sign of Q, we rewrite the 
above equations as

* ( / ) = £  X[m\ e -Jma>, (11.3)
m=-oo

and

1 r T°12
X[m] = -  x(t)eJmatdt. (11.4)

0̂ J -T o /2

Note that expression 11.3 is extremely similar to expression 11.1. The 
similarity illustrates that we may regard expression 11.1 as a Fourier series 
expansion of the periodic frequency function X  (cj) whose fundamental 
’’angular frequency” period is 2n. We thus adopt the following change o f 
notations:

To —> 27r, Q —> 1, x(t) —* X((o), X [m ] —»*[«], t —> oi, and m —> n, 

and rewrite expressions 11.3 and 11.4 as follows:

X(w) = ^  x [n ]e - jni°, (11.5)
/ / =  —oo

Chapter 11. FOURIER TRANSFORM OF DT SIGNALS
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and

x [n] = l -  [  X(oj)ejlUl‘dLo. (11.6)
2 71 J_n

Expression 11.5 is the definition of the discrete-time Fourier transform 
(DTFT) of and expression 11.6 defines the inverse discrete-time 
Fourier transform of X{u>). In other words, discrete-time Fourier transform 
is essentially another expression of Fourier series with time domain and 
frequency domain interchanging their role.

11.1.2 Examples of Discrete-time Fourier Transform

Example 11.1 Consider the discrete-time Fourier transform of the 
time sequence shown below.

x[n]

n

Derive the real and imaginary parts of X(u>).

Solution

jrfnj = <J[/i] -  25[n - 1 }  + 5[h -  2] + 3S\h -  3]I 

X{d ) = 2  jc[n] e~jnw = 1 -  2e~JW + e~j2oj + 3e~j ^
n=-oo

= l-2 (co sa> -y  sina»)+(cos2a>-y sin2w)+3(cos 3 o j - j  sin 3u>) 

= [ 1 - 2  cos a>+cos 2to»+3 cos 3oj\ + j  [2 sin uj-$ in2a j-3  sin 3a>].

Re[X(a>)] = l-2cosa*+cos2a>+3cos3a>,

Im[X(cj)] = 2sina»-sin2tj-3sin3it» .
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CO CO

Figure 11.1: Repeating pattern of the discrete-time Fourier transform de­
rived in Example 11.1

Figure 11.1 shows the real and imaginary parts of the discrete-time 
Fourier transform we derived in Example 11.1. It is obvious that X(u>) 
repeats itself every moment oj changes ±2n (or equivalently, /  changes 
±1). That is why we can expand the complex function X(co) as a Fourier 
series and specify its Fourier series coefficients as

jc[0] = 1, jc [ 1 ] = —2, x[2] =  I,  and jc[3] = 3.

Example 11.2 Derive the discrete-time Fourier transform of the fol­
lowing time sequence.

x [ n \= a nu[n\ (\a\ < 1)

Solution

X(oj) = Y  x[n]e-jmo= Y  anu[n]e-jmo = Y j a’'e~Jnw
n=~oo n= -o o  n=0

°° 1
= Y ( a e ~ n n = ----- .4-j 1 -a e ~ Jwn=0

Example 11.3 Derive the discrete-time Fourier transform of the fol­
lowing time sequence.

x[n] = aM ( |a | < 1)
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Solution

X(w) = 2  x[n] e -Jnoj = £  aw e - i,uo
n=—co n=-oo

= 1 + Y j a"e-Jnto+ a-"e-Jn,J
/1=1 n=-1

= 1 + Y j ane - jnu' + Y j anejn°J
/1=1 /7=1

= l + Y J( a e - n n + f j ( a e n n
n=l n=l

a e~JÜJ a eJUJ
— 1 + -----------7— + ---------

1 -  a e~JW 1 -  a e 

j + a e~J0) + a ejlJJ -  2a2 _ 1 -  a2
1 -  a e'-i“ -  a + a2 1 - 2 a  cos to + a2

Example 11.4

x[ri \  =  8 [ n  +  2 ]  +  8[n  +  1 ]  +  6[n\  + 8 [n  -  1 ]  +  6 [ n  -  2] ,

y [n] = 6[n + 4] + S[n + 2] + <5[n] + S[n -  2] + 6[n -  4],

z[n] = 6[n + 4] + ¿[n + 3] + ¿[n + 2] + 6[n + 1] + <5[n]
+ 6[n -  1] + 8[n -  2] + <5[n -  3] + 6[n -  4].

Show that the discrete-time Fourier transforms o f the above time 
sequences are as follows:

v /  , sin(5o»/2) v / sin(5o») J N sin(9w/2)
X(ai) = —— ———, Y(oj) = —— , and Z(a>) = - 7- 7— —

sm(&>/2 ) sm(w) - sm(&>/2 )

Solution

X (oj) = ej2w + ejoj + 1 + e~jw + e~j2M
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= eJ2w [ 1 + e~Ju + e~J2oj + e~jiw + e~j4w]

= eJ2“ e e e
1 -  e~Jw 1 -  e - jw

_ e-jW 2 (gi-^ /2  _ g-y '^ /2) ^  sin(5W 2)
e ~ j ( o / 2 ( e jco /2 _  e - j o j / 2) sin(tLl/2 )

K M  = ej4w + ej2oj + 1 + e~j2w + e~j4to 

= eJ4" r i + p-J2̂  4. p-J4̂  j. „-jfo*[ 1 + e~j2w + e"'4" + e~jbw + <T' 8“ ]

i _ e- j iOw „y4w _ „-y6w_ gj4<j c _ c c
1 -  e~J2(° 1 -  e~J2(0

_  e - ju  ( g7&* _  e - J ^ )  _  sin(5o)) 

e - j “  (eJu -  e~iw) sin(w)

Z((jS) = ej4w + eJ3oj + ej2w + eJ0J+ 1 +e~Joj + e~J2aj + e~j3oJ + e~j4w

= eJ4w [ 1 + e~Jco + e~i2to + e~J3uj + e~JAu 
+ e-j*“ + + e~Pu + e -j*“]

.iAw 1 -  e~j9w «><" -  e - jSoj 
~ e  1 -  e~J'u ~  1 -  e~lu

_ e-j» /2 (eJ9»l2 _  e- J ^ ! 2) _ sin(9fa>/2)
e-jo>!2 (ejo>/2 _  e-jo>!2) ~ sin(ot/2) '

Figure 11.2 shows the time sequences and their discrete-time Fourier 
transforms derived in Example 11.4. Comparing X (oj) with Y(u>) reveals 
that X(oj) and K(w) have a frequency scaling relation such that

y(w) = X(2oj).

We recall that for a Fourier transform pair, time expansion of x(t) is 
associated with frequency compression of X (oj) as follow:

x(t/2)  <=> 2X(2a>).
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Figure 11.2: Time sequences and their discrete-time Fourier transforms 
derived in Example 11.4

While treating time sequences, on the other hand, x [n/2] is not associated 
with X(2a>). In fact. Figure 11.2 demonstrates that

In other words, the number of nonzero elements of a time sequence should 
be kept constant to satisfy expression 11.7.

11.L3 Properties o f Discrete-time Fourier Tnmsfonn.

Several important properties of the discrete-time Fourier transform are 
summarized in Table 11.1. Note that many properties we have discussed 
about Fourier transform (Table 9.1) still applies to discrete-time Fourier 
transform. There must be, however, distinction between the two. We

*(*)[n] <=> X{ku>),

where X(k) [n] is defined for an integer k as

(11.7)

*(*)M  =
x[n/k]  if n is a multiple of k,
0 if n is not a multiple of k.

(11.8)
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Table 11.1: Properties of Discrete-time Fourier transform

Property x[n] X (oj)

Periodicity x[n] X(io) = X ( oj + 2kn)

Linearity ax i [n] + bx2[n] a X x(u>) + bX2(u)

Conjugation x*[n\ X ' ( - cj)

Time Reversal x [ - n ] X ( - oj)

Time Scaling *(*)[«] X(koj)

Time Shifting x[n -  no] e-j**oX {cj)

Frequency Shifting ej ^ x [n\ 'o313w*X

Time Differencing x[n\ - x [ n  -  1] (1 - e ~ jw)X(io)

Time convolution x\ [n] *x2[n] Xi (oj) X 2(oj)

Frequency convolution xi [n]x2[n] --—X\(o)) ® X 2 (ct>) 
2/r
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have discussed, for example, that time scaling can be associated with 
frequency scaling only if the time scaling satisfies the condition described 
in expression 11.8.

Consider also frequency convolution. Multiplying two time sequences 
is associated with taking convolution in frequency domain. The convo­
lution in frequency domain is, however, not a kind of convolution we 
have discussed so far. Denoting y [n ]  =  .V||/?].t2 [ n ] ,  we describe the 
discrete-time Fourier transform of >’[;?] as

Y(u>)= Z  y[n] £  a , [/i] ,v2 [n] e~Jnw
n=-oo  /i=-oo

00 i 1 Cn

n=-oo L 71

1 r*

jr2[n] e~jn0J 

dip

J _  f *  
In

X\{<p)

oo

£  ejn*x2 [n]e~Jna
I= -00  

OO

£  x2[n]e-jn(<° - ^ dip

i r*
= 2- J  Xi(<p) x2(a) -  <p)d<p.

The last integral of the above expression defines the circular convolution 
integral, which we denote as

X l (u))® X2(u>)= [ 2* Xi(<p)X2(o)-<p)d'p. (1.1.9)
Jo

And using the circular convolution notation, we express the frequency 
convolution property as

x \[n]x2[n\ <=> —  Xi(w )® X 2(u)). (11.10)

Example 11.5 Find the inverse discrete-time Fourier transform of die 
following frequency function.

Y(a>) = - -----!— —  (|a | < 1).
(1 -  ae
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11.2 DISCRETE FOURIER TRANSFORM

11.2.1 Concept of Discrete Fourier Transform

Discrete-time Fourier transform defines Fourier transform of nonperiodic 
sequences. It is discrete Fourier transform (DFT) that defines Fourier 
transform of periodic sequences. We first denote a periodic time sequence 
as

*[n] = {x[0], *[1], x[2], • • • , x[N  -  1]},

where N  denotes the period of the sequence. Note that the period N can 
be a multiple of the fundamental period Nq. Discrete Fourier transform 
associates the periodic time sequence jc [/i] with a frequency domain se­
quence X[m\ that is also periodic in frequency domain with the identical 
period N  such that

X[m] = {X[0], X [l], X[2], , X [ N -  1]}.
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More specifically, the two sequences are related a;.

N - 1

X[m] = (11.11)
h=o

and
. N—1

*[«] = -  Y  X \m \e j2n,''",h . (11.12)
m=()

Expression 11.11 is the definition of the discrete Fourier transform of
jc[/i], and expression 11.12 defines the inverse discrete Fourier transform
of X[h/]. The periodicity of .r[/j] and X[m] can be demonstrated as 
follows:

. N-1 . N - 1
x[n+kN\  = X[m] ei 2nm̂ kN)lN = 1  £ * [ « ]  ei 2nmn,N ei2nmk

N m=0 m=0
I N~l

= - j jY * x[m]eJ2nmn/N=x[n]'
m=0

and
N - l  N - l

X[m+kN] = £ * [ « ]  e - j ^ ^ n / N  =  ^-jln m n lN  g -j2nkn

n = 0  n=0

N - l

= e~i2nmnlN = X[m\,
n=0

where k is an integer.

11.2.2 Examples of Discrete Fourier Transform

Example 11.6 Sketch the following time sequence and derive the 
discrete Fourier transform of it.

jc[#i ] =  { 1 .  2, - 1 ,  2 } .

Solution
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x[n]

u

3
X[m] = £ * [ " ]  e-j2”mn/4

n=0

= *[0] +*[1] e~jnm/2 +*[2] e~j "m +*[3] e-J3nm/2 

= 1 + 2e~j n m -  e~inm + 2e~^nm̂ 2.

X [0] = 1 + 2 -  1 + 2 = 4,

X [l] = 1 + 2e~j"12 -  e~jn + 2e-j i " '2 = 1 -  2j  + 1 + 2 j  = 2,

X[2] = 1 + 2e~j” -  e~j l ” + 2e~J3* = 1 -  2 -  1 -  2 = -4 ,

X[3] = 1 + 2e-J3*12 -  e~j3n + 2e~j9nl2 = 1 + 2j + 1 -  2j  = 2.

X[m] = {4, 2, -4 , 2}.

Example 11.7 Sketch the fol 
discrete Fourier transform of i

x[n] = {0

Solution

x[

, 1 .  -

lowing time sequence and derive the 
t.

2, 0. -2 ) .

n]

' l .  , ! ,  .

• # i
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x\ m\=YjXln}e-J2*"""A
n=0

= jc[0) + x \I ] e-jm,r- +.v[2| e'**m + .k[3] e~J^ m/2

-  2e~inml~ -  2e~jinml2.

X[0] = 2-2 = 0,

X [ l \  = 2e~j”' 2 -  2e-j *”12 = - 2 j - 2 j  = -4y\

X[2] = 2<>-''r -  2f->3,r = -2  + 2 = 0.

X[3] = 2e~J3*12 -  2e~j9*12 = 2y + 2j  =  4y.

X[m] = {0, —4y, 0, 4y}.

Examples 11.6 and 11.7 demonstrate that the even symmetry of jc[/i] 
accompanies real-valued X[m], whereas the odd symmetry of J t [ n ]  brings 
about X[m] that is zero or imaginary.

Example 11.8 Sketch the fol 
discrete Fourier transform of i

x[n] = {1
Solution

x[
t

t  !  1

lowing time sequence and derive the 
t.

-2 . 1. 3}.

«]

’ T T T

1

X[m ] = ^
n=

I  1

tx[n] e- j2nmn/4
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= *[0] + *[1] e-jnm/2 + x[2\ e~inm +x[3] e~ilnml2

-  | _ 2e~->nm/2 + e~jnm + 3e~^3nm̂ 2

X[0] = 1 -  2 + 1 + 3 = 3,

X[ 1] = 1 -  2e~j7t'2 + e~Jn + 3e~ji,r/2 = 1 + 2 j  -  1 + 3j  = 5j,

X[2] = 1 -  2e~jn + e~j2n + 3e~j 'in = l + 2 +  l -  3 = l ,

X[3] = 1 -  2e-j i ”12 + e-j3n + 3e~j9nl2 = 1 -  2 j  -  1 -  3j  = -5 ; .

X[m] = {3, 5j ,  1, - 5 j ) .

Figure 11.3 shows the real and imaginary parts of the discrete Fourier 
transform derived in Example 11.8. Note that Figure 11.3 also shows the 
graphs of Figure 11.1 and highlights the connection between the discrete- 
time Fourier transform (DTFT) and discrete Fourier transform (DFT).

Re(Ar[w])

Im(X[/w])
< i\ ji.

• \ . :

Nf

: • *. r  •

f ’*(i

Figure 11.3: Discrete Fourier transform (DFT) derived in Example 11.8.
The period of X[m] is 4. Dotted curves represent difcrete- 
time Fourier transform (DTFT) derived in Example 1!. 1.
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Dotted curves indicate the DTFT of the following nonperiodic sequence: 

6 [ n ] - 2 8 [ n -  1]+ tf [n - 2 ]  + 3 6 [ n - 3], 

while discrete plots indicate the DFT of the following periodic sequence:

{I, -2 . I. 3}.

Figure 11.3 illustrates that discrete Fourier transform ('DFT) is, essentially, 
equivalent to ’’sampling” discrete-time Fourier transform (DTFT) at the 
following uniformly spaced frequencies :

to = I n m l N ,

where m -  0, 1, 2, • • • , N -  \.

Example 11.9 Derive the inverse discrete Fourier transform of the 
following periodic sequence:

X[m\ = {3, 5j ,  1, - 5 j} .

Solution

1 3
jc [n] = ^ £ x [ m ] * '2"'nn/4

m=0

= ^X[0] + 7 * [1 ] ejnn/2 + ]-X[2] eJm + j * [ 3 ]  eJ3nn/2 
4 4 4 4

= 3 + K  ein'>/2 + I  e)nn _ e/3^n/2
4 4 4 4

m  = }v 5i + \ - 5i  = u

XT3T = -  + — + -  ej3jr -  — e ^ " 12 -  -  + -  -  -  + -  = 3
Xi 3J “ 4 + 4 e 4 4 *  ~ 4 4 4 4

x[n] = {l, -2 , 1, 3}.
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For N  = 4, discrete Fourier transform is summarized in a matrix form 
as follows:

N - 1 3

X[m] = e-j2nmnlN = £ * [ « ]  e-jmnnl\
n=0 n=0

3

X [ ° ] . 5 > W  =*[0]+x[l] +x[2] +*[3],
n=0 

3

X[\)  = Y j x ^ e~iml2 =x[0)+x[\)e-inl2 +x[2]e~Jn +x[3] e~j)n 2,
n=0

3

X [ 2 ] = Y Jx[n]e - j,'n =*[0]+*[l] e~jK +x[2] e~J2*+x\3] e~Ji*.
n = 0  

3

X [3 ]= ^ jr[n ]  e~j3nnl2=x[0i\+x[\\ e~J3*l2+x[2\ e~j3”+x[3] e~j)nl2,
n=0

Chapter 11. FOURIER TRANSFORM OF DT SIGNALS

fX[0]' f l  1 i A '*[0]'
X [l] 1 -7  -1  7
X[2] 1 - 1  1 - 1 x[2]

U [3 ]J J  y - 1 -y> ^[3];

Likewise, for N  = 4, inverse discrete Fourier transform is summarized as

1 N~l l 3 
*[n] = j -  2  X[m] ej2*mn/N = -  einmn' 2,

m = 0  m=0

m=0

1 J 4 4 *  4 4 4 4m=0

x [ 2 \= X- Y x [ m \ einm + i 2 1 ey2Jr+ £ 2 1 e,-3»i
m=0

j(3]=i ¿x  w - M +M ^ .» +iP !^ .+iEP!,
4 ^ j  4 4 4 4m=0
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r l 1 1 l \ ' .v|o|V

x[l] _ 1 1 ./ - 1  -. / A|l]
x[2] “ 4 1 - 1  1 - 1 X\2\

^(3]j J  ~ j  - I  j> U |3 | /

And the multiplication of the two matrices that represent DFT and inverse 
DFT, respectively, yields the 4 x 4 identity matrix as follow:

/1 1 1 l \ l l 1 1 \ \ /1 0 0 0'
1 1 i  - 1 ~ j 1 ~ j -1 j 0 1 0 0
4 1 -1 1 -1 1 -1 1 -1 0 0 1 0
,1 ~ j  ~ 1 j , J -1 ~ j ) lo 0 0 1;

In general, DFT and inverse DFT are summarized in the following matrix 
equations:

,(11.13)

r X[0] ' <\ 1 1 - I  1 ' *[0] '
X[l] 1 z-‘ z~2 ••• z-(AM) *[1]
X[2) = 1 z-2 z"4 ••• z-2̂ 1* x[2]

{ z - ( N - l )  z -2(N-i)  . . . ^[A^-l],

and

' x[0] \ 11 1 1
1 \

r X[0]
*[1] 1 1 z z2 • Z(AM) X[l ]
x[2]

1
= N

1 z2 z4 • Z2(AM) X[2]

a Z (A M ) z2(N-i) . • t(aw)2> ,AT[A^-l]y

,(11.14)

where z = ej2”lN.

Example 11.10 Consider the discrete Fourier transform of the follow­
ing periodic sequence:

j c [ m ]  =  { 1 ,  1 ,  0 ,  1 ,  0 ,  0 ,  1 ,  0 ,  0 ,  0 ,  0 ,  1 } .

235



Chapter 11. FOURIER TRANSFORM OF DT SIGNALS

What is X [11]?

Solution

We count that N -  \2 and denote z = ej2nlN = ejn^ .  We 
also sketch powers of z and derive X [ 11 ] as follows:

1m Im

X [ 11 ] = x [0] + zH11 x [ 1 ] + z '33 * [3] + z“66 x [6] + z '11211 .v [ 11 ] 

= l + z - 11+ z - 33 + z-66 + z- 121 

= l + z  + z3 + z6 + z "  = V3 + y

11.2 J  Properties of Discrete Fourier Transform

Several important properties of discrete Fourier transform are summarized 
in Table 11.2. Note that many properties we have discussed about Fourier 
transform (Table 9.1) and discrete-time Fourier transform (Table 11.1) still 
apply to discrete-time Fourier transform. There are, however, properties 
that are unique to discrete Fourier transform. Consider, for example, the 
time convolution property. Denoting Y[m\ = X\ [m ] X2 [m], we describe 
the inverse discrete Fourier transform of Y[m\ as

. N - \  . N - 1

y[n] = -  Y  Y[m] eJ2nn"',N = ^ Y j X i X2[m \ei2n'mlN
m= 0 m= 0
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Table 11.2: Properties of Discrete Fourier transform

Property .v[/i] X[ m]

Periodicity x\n] = x \n  + kN\ X \m )  = X\m  + kN]

Linearity a.V| [n] + ¿.vtJh] a X  | [m] + bX2[m]

Conjugation x*[n] X*[-m]

Time Reversal * [ - n ] X [-m ]

Time Shifting j f [n  -  n0] e - j 2nmn"INX [m]

Frequency Shifting e j 2 n m 0n / N x [ n ] Af[m -  mo]

Time convolution x\ [n] ® x 2[n] * 1  [m] X2[m]

Frequency convolution xi [n\ x2[n] ¿ X j  [m] ® X2[m]
n

, N-l I N - I  

m=0 \fc=0
e - j 2 n m k / N  £

1

jlnmn/N

N- 1 ( . N-l  \

e~i2nmklN Xi[m] e ^ nrr‘n^N\  
k=0 \ m=0 I

N-\ I - N-\  \ A/-1

= Z  V1 [k] b v  Z  X 2 e ^ m{n~k)lN U  M  ^  -  *1
k=() \ m= 0 I k= 0



The last sum of the above expression defines the circular convolution sum, 
which we denote as

N -1

jci [w] © x 2[n] = ^  X\ [fc] X2 [n -  ¿]. (11.15)
*=o

And using the circular convolution notation, we express the time convolu­
tion property as

x  i [w] © X2 [w] <=> X\ [ m] X2[m]. (11.16)

Chapter 11. FOURIER TRANSFORM OF DT SIGNALS

11.3 SUMMARY OF FOURIER ANALYSIS

i rTo/2
'  X  (t)e~imQ,dt

T0/2

Fourier series

x(f) = £  X [ m ] = j r  f
m= -o o  "

x(t) = x(t  + kTo)

Fourier transform

x(t) = ^~  f  X (oj) ej0J' doj X (u )  = f  x (t)e~ jw,dt
L i l  J —oo J —oo

Discrete-time Fourier transform
i r”

x[n] = —  I X(oj) ejn"  dcj X{oj) = £  •*["] e~jnuj
n n= -oo

X{cj) =X(<o + 2nk)

Discrete Fourier transform
. N - \  N - 1

*[n] = j -  £  X[ m] ej2nmnlN X[m] = £ * [ « ]  e~J*nnHlN
m = 0  n= 0

x[n] =x[n + kN] X[ m] =X [ m + k N ]
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PROBLEMS

Problem 11.1 Determine time sequence ,v[h | that yields the following 
discrete-time Fourier transform:

X (oj) = 1 + 3e~j2i° -  2e~J*w + e~iAiU.

Problem 11.2 Determine time sequence .*[«] that yields the following 
discrete-time Fourier transform:

X (oj) = 2 -  e ' J2w + 3e~j3w -  2e~j4” .

Problem 11.3 Consider the following time sequence:

x[n\ = <5[n] + 26[n -  1] -  36[n -  2],

Derive the real and imaginary parts of the discrete-time Fourier transform 
X(a»), respectively.

Problem 11.4 Consider the following time sequence:

x[n] = £[n] -  36[n -  1] + 26[n -  2].

Derive the real and imaginary parts of the discrete-time Fourier transform 
X(w), respectively.

Problem 11.5 Find the discrete Fourier transform X[m]  of the following 
periodic sequence:

*[«] = {2, -1 , 1, -1}.

Problem 11.6 Fihd the discrete Fourier transform X[m]  of the following 
periodic sequence:

jrW  = {0, -2 , 0, 2}.
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Problem 11.7 Find the inverse discrete Fourier transform x[n] of the 
following periodic sequence:

X[m] = {l, 1, 5, 1}.

Problem 11.8 Find the inverse discrete Fourier transform x[n] of the 
following periodic sequence:

*[m ] = {0, 4j ,  0, -4 j } .

Problem 11.9 Consider the discrete Fourier transform X \ m ] of the fol­
lowing periodic sequence:

jc [«] = { 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1}.

What is X  [2]?

Problem 11.10 Consider the discrete Fourier transform X[m] of the 
following periodic sequence:

j c [ « ]  =  { 1 ,  1 ,  0 ,  1 ,  0 ,  0 ,  1 ,  0 ,  0 ,  0 ,  0 ,  1 } .

What is X  [3]?

Chapter 11. FOURIER TRANSFORM OF DT SIGNALS
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NUMERICAL EXERCISE VIA FFT

Chapter 12

Chapters 7 through 11 have provided discussion about Fourier analysis 
of different signal types. As the final step of Fourier analysis, we focus 
on data sampling and numerical implementation of Fourier transform via 
digital computers. The numerical work is based on the MATLAB package. 
Those who are not familiar with MATLAB are recommended to review 
Chapter 6 or other literature that includes Hahn and Valentine (2019) and 
Moore (2014).

12.1 SAMPLING PERIOD AND DURATION

Sampling is an important operation in signal processing. It may be regarded 
as a way of converting continuous-time signals to discrete-time signals. In 
other words, sampling is the bridge from continuous-time to discrete-time 
signals. Sampling can be done by using a train of impulses. We should 
note, however, that sampling can introduce a loss of information.

Consider sampling (or measuring) data 20 times a second. The sam­
pling frequency f s is thus 20 Hz, and the sampling period (or interval) 
A/ is 1/20 second. With the f s value, one may safely argue that there is 
no problem detecting 2 Hz signals. On the other hand, a data set whose 
sampling frequency is 20 Hz does not provide any significant informa­
tion about phenomena that vary harmonically one million times a second. 
What then is the highest frequency that a data set with f s = 20 Hz may 
deliver meaningful information?

Figure 12.1 provides a qualitative answer to the question. Four different 
cases aré shown With the identical sampling frequency ( /s -  20). Gray 
curves represent the original data we try to measure, and the original data 
frequencies art 2 Hz, 4 Hz, 8 Hz, and 16 Hz for Figure 12:1 (a) through 
(d). respectively. Black lines depict what it looks like when we simply 
connect what we have measured. It is evident that up to 8 Hz, we are 
able to identify the original data frequency. In case of Figure 12.1 (d), 
however, it is obvious we are unable to detect 16 Hz data and the measured
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0 0.2 0.4 0.6 0.8 I

Figure 12.1: Signal frequency (gray curves) versus sampling frequency 
(black dots). Signal frequency values are (a) 2 Hz, (b) 4 Hz, 
(c) 8 Hz, and (d) 16 Hz, respectively.

data apparently varies with 4 Hz frequency. In fact, the 20 Hz sampling 
frequency ensures one to identify only upto 10 Hz signal, and, with a given 
sampling frequency f s, the highest measurable frequency / max is the half 
of the sampling frequency such that

/max = 2 = 2 A t■ (1 !I)

Expression 12.1 is important while processing an already-acqured 
data set. There are, one the other hand, situations that one need to decide 
the sampling frequency before the outset of an experiment. In such a 
situation, one has to ask what the target frequency range of the experinent
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is. Denote the target frequency range as

h  < / <  fa.

where f t  and f u  represent the lower and upper limit of the target frequency 
range. The minimum sampling frequency then should be

f s  >  2 f u .  ( 1 2 . 2 )

and we call the minimum value of the sampling frequency the Nyquist 
frequency.

A question that naturally follows the above argument is how we do 
ensure the lower frequency limit /¿. of the target frequency range. A quick 
answer is that we have to measure for sufficiently long time. In other 
words, the lower frequency limit is related to the sampling duration that 
we express as

0 < t < /max-

Figure 12.2 shows four different cases that measure signals for 1 second
(fmax = 1). It is evident that it is unlikely to identify signals whose periods
are longer than the maximum time window /max. We can thus argue that 
with a given /max value, the lowest measurable frequency / mjn is given as

/ m i n  =  — —  • ( 1 2 . 3 )
» m a x

And we also argue that while deciding the sampling duration before an 
experiment, one has to make sure to measure for long enough time such 
that

/ m a x  >  ( 1 2 . 4 )

JL

t (  S)

Figure 12.2: Signal frequency versus sampling duration
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12.2 WHAT IS FAST FOURIER TRANSFORM?

Most of the time, using a digital computer for Fourier transform means 
doing discrete Fourier transform (DFT). And doing a discrete Fourier trans­
form is to solve the matrix equations in expressions 11.13 and 11.14. For 
periodic sequences whose period N  is small, it is trivial to solve the matrix 
equations. As the period N  increases, however, the computation of DFT 
quickly becomes a demanding task, because the number of multiplications 
necessary for a DFT increases with N2.

There have been efforts to ease the calculation of DFT. Among them, 
the most well known and widely used algorithm is called the fast Fourier 
transform (FFT), which was first introduced by Cooley and Tukey (1965). 
In other words, the FFT is an algorithm that performs DFT with a great 
computational efficiency. In this study, we do not join discussing computer 
algorithms but provide guidelines of using the FFT. For the most part, 
readers are safe to regard the DFT and FFT identically. More in depth 
discussion about the FFT is provided by Brigham (1988).

We have frequently emphasized that DFT (and FFT as well) is for 
periodic sequences. Most of the data sets we intend to do Fourier transform 
are, however, not periodic sequences. We should therefore remember that 
doing a DFT with a nonperiodic sequence is essentially accepting an 
assumption that the nonperiodic data set is repeating itself as a whole. In 
other words, a DFT algorithm always regards a finite sequence that we 
provide as a periodic sequence and also regards the length N  of the finite 
sequence as the period N  of the periodic sequence.

12.2.1 FFT Exercise with Handel

For the first exercise of the FFT, we use a data set that comes with MAT- 
LAB. Type the following commands within the MATLAB Command 
Window:

load handel; 
soundsc(y,Fs);

One should hear the beautiful chorus ’’Hallelujah”, which decorates the 
climax of Handel’s oratorio ’’Messiah”. One should also notice that the 
MATLAB Workspace shows two variables. The first variable Fs indicates 
the sampling frequency, and its value is 8192 (i.e., 8 kHz). Another
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variable y represents an array that contains 73113 real numbers, and those 
numbers altogether constitute the audio signal ( f the chorus ’’Hallelujah”.

Example 12.1 Type the following MATLAB script and run it.

c le a r ;
load  han d e l; 
x t  = y; 
xf = f f t ( x t ) ; 
x t2  = i f f t ( x f ) ;  
xf_ab = a b s (x f ) ;  
xf_ph = a n g le (x f) ;

°/0 F as t F o u r ie r  tra n s fo rm
“/, In v erse  F a s t F o u r ie r  tran sfo rm

figure(l); 
subplot(2,2,1); 
plot(xt);
subplot(2,2,2); 
plot(xt2); 
subplot(2,2,3); 
plot(xf_ab); 
subplot(2,2,4); 
plot(xf_ph,’. ;

Solution

20000 40000 60000 80000

-0.5

20000 40000 60000 80000

20000 40000 60000 80000
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Example 12.1 demonstrates that MATLAB functions f  f  t  and i f f  t  do 
perform the DFT and inverse DFT. The first and second subplots exhibit 
that doing the DFT and inverse DFT in succession does not alter the signal 
and preserves the original signal as it is. And the third and fourth subplots 
are the amplitude and phase spectra of the audio signal: the phase spectrum 
looks enigmatic but the amplitude spectrum, on the other hand, clearly 
shows amplitude peaks. Interestingly, the amplitude spectrum also shows 
a symmetric pattern, but, in general, it is difficult to take any quantitative 
information from the subplots of Example 12.1. The main reason for the 
difficulty is because the horizontal axes only show the sequence indexes n 
or m and do not show time or frequency scales. And it is up to a user to 
make those scales. DFT or FFT do not do that.

The sampling frequency f s and total sample number N  o f ’’Hallelujah”
are

f s = 8192 and A: = 73113,

respectively. The sampling period At and sampling duration /max are thus

Af = l / / i  = 1/8192 and rmax = (N  -  1)A/ = 73112/8192,

respectively. At the beginning of Chapter 12, we have discussed that with 
a given sampling period and sampling duration, we may determine the 
highest and lowest frequencies that a data set can deliver meaningful in­
formation. In case of ’’Hallelujah”, those frequency values are determined 
as

1 ^ 1 8192/max — 7T7~ — 4096 and /min — " — »2At fmax 73112

respectively. Note that the /min value is, in fact, equivalent to the ’’fre­
quency” sampling period (or interval) A f .  Recall also that DFT associates 
two sequences x [n] and X[m\  that have an identical sample number N. N  
frequency samples thus represent frequency values within the following 
range:

0 < /  < (AT -  1 )A / = ( N -  1 ) / min = —  = -J- = 2 /max-
f m a x  At

One may be puzzled to notice that the frequency range reaches beyond the 
/max value (the highest frequency that our data set can deliver meaningful
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l i l i

Figure 12.3: Periodicity related to the discrete Fourier transform of "Hal­
lelujah”

information). It is, in fact, not a puzzling thing at all, and we only need 
to recall that DFT regards both the time sequence *[/?] and frequency 
sequence X[m]  as periodic sequences with the period N.  All the above 
argument can be thus summarized in Figure 12.3.

Figure 12.3 shows the genuine periodic sequences DFT is handling. It 
is evident that the frequency domain data between / max and 2f max corre­
sponds to the data between - / max and zero frequency. Utilizing the above 
time and frequency axes information, we are ready to do Example 12.2.

Example 12.2 Type the following MATLAB script and run it. 

c le a r ;
load handel; 
xt = y;
ns = length(y); 
dt = 1/Fs; 
df = l/((ns-l)*dt); 
ta = (0:dt:(ns-i)*dt)’; 
fa = (0:df:(ns-l)*df)’;

figure(2);
| subplot(3,2,1); plot(ta,xt); 
xlabel(’t (s) ’);

'/. Time sampling interval 
*/, Frequency sampling interval 
*/, Time axis 
*/. Frequency axis
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xf = f f t ( x t ) ;

s u b p lo t(3 ,2 ,2 ) ;  p lo t ( f a ,a b s ( x f ) ) ;  
x l a b e l ( ’f  (H z)’) ;  a x is ( [0  8192 0 800 ]);

xf = f f t s h i f t ( x f ) ;  '/, S h if t  frequency domain data
i f  mod(ns,2) == 0 '/. S h if t  frequency ax is

f a  = f a  -  n s /2 * d f ;
e ls e

f a  = f a  -  ( n s - l ) /2 * d f ;
end
s u b p lo t(3 ,2 ,3 ) ;  p lo t ( f a ,a b s ( x f ) ) ;  
x l a b e l ( ’f  (H z)’ ) ;  a x i s ([-4096 4096 0 800]);

fo r  id  = l :n s  '/, Abandon h igh  frequency
i f  ( a b s ( f a ( id ) ) > 2000) 

x f ( id )  = 0;
end

end
s u b p lo t( 3 ,2 ,4 ) ;  p lo t ( f a ,a b s ( x f ) ) ;
x la b e l ( ’f  (H z)’) ;  a x i s ([-4096 4096 0 800]);

xf = i f f t s h i f t ( x f ) ; '/, S h if t  frequency domain d a ta
i f  m od(ns,2) == 0 */, S h i f t  frequency a x is

f a  = f a  + n s /2 * d f;
e ls e

fa = fa + (ns-l)/2*df;
end
subplot(3,2,5); plot(fa,abs(xf)); 
xlabel(’f (H z)’ ) ;  axis([0 8192 0 800]);

x t = i f f t ( x f ) ;

s u b p lo t(3 ,2 ,6 ) ;  p l o t ( t a .x t ) ;  
x l a b e l ( ’t  ( s ) ’ ) ;
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Solution

800

600

400

200

i l . . Jlll
0 1000 2000 3000 4000 5000 6000 7000 8000

/ ( H z )

800

600

400

200

0

I I

■fclntilÉ i L  J û ià à
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

/ ( H z )

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

/ ( H z )

249



Chapter 12. NUMERICAL EXERCISE VIA FFT

800 ---------- 1---------- 1---------- 1---------- 1---------- 1-----------1---------- 1-----------r

0  1000 2000  3000  4 0 0 0  5000  6000  7000  8000

/ ( H z )

I  I--------- 1 I I i i i --------- r

j _______ i_______ i_______ i_______ i_______ i________i_______ i_______ i_______
0 1 2 3 4 5 6 7 8 9

/ ( s )

Example 12.2 demonstrates how one can edit the frequency content of 
a time sequence. We first perform the fast Fourier transform of the time 
sequence ’’Hallelujah” via the MATLAB function f f t .  We then shift the 
frequency domain data via the MATLAB function f f t s h i f t  and shift 
the frequency axis as follows:

0 —  /  —  2 / m a x  * ~  / m a x  —  /  —  / m a x -

Note that we need to consider two cases: one for even-numbered // and 
the other for odd-numbered N. In case of shifting the frequency domain 
data, f f t s h i f t  automatically takes care of the two cases.

Once we have adjusted the data and axis, we may perform whatever pro­
cessing we want. In Example 12.2, we are removing frequency compcnents 
higher than 2000 Hz. While performing frequency domain proce;sing, 
however, we should not violate the symmetry requirement in the freqiency 
domain that amplitude and phase spectra should be even and odd functions 
of frequency, respectively. Losing the frequency domain symmetry nakes 
one to face complex-valued time sequence upon the inverse transform.
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Finishing the frequency domain processing, we shift back the frequency 
domain data via the M A T LA B  function i f f t s h i f  t. And we perform 
the inverse transform via the M A TLA B  function i f  f t .  The last subplot 
of Example 12.2 shows the time sequence "Hallelujah" that has lost its 
high frequency components. One may verify the result of frequency 
modification by entering the following commands within the M A T LA B  
Command Window:

so u n d sc (y ,F s ); 
so u n d sc (x t.F s );

The first command plays ’’Hallelujah” with the original frequency compo­
nents, while the second plays the one without high frequency.

12.2.2 FFT Exercise with Sinusoidal Functions

Example 12.3 Use the following M A TLA B  script and plot the real 
part, imaginary part, amplitude spectrum, and phase spectrum of 
Jt(f) = cos(2tt/o/) with /o = 25 Hz.

c le a r ;
fs = 1000;
ns = 1000;
dt = 1/fs;
df = l/((ns-l)*dt);
ta = (0:dt:.(ns-l).*dt) ’;
fa = (0:df:(ns-l)*df)’;

xt = cos(2*pi*25*ta); 
if mod(ns,2) == 0

fa = fa - ns/2*df;
else

fa = fa - (ns-l)/2*df;
end
xf = fft(xt); 
xf = fftshift(xf); 
xf_re = real(xf);
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x f _ i m  =  i m a g ( x f ) ;  

x f _ a b  =  a b s ( x f ) ;  

x f _ p h  =  a n g l e ( x f ) ;

Solution

500
400
300
200
100
0

Re[AX/)]

500
/ (

500
Hz)
D\  .

500
400
300
200
100
0

-100
500 0 500

/ ( H z )

0 ( f )

500

We have studied in Chapter 9 that the Fourier transform of cosine functions 
is described as

cos(2nf0t) = n [S( f  + f 0) + S ( f  -  / 0)].

Example 12.3 demonstrates how the discrete Fourier transform mimics 
the Fourier transform of the cosine function. It is evident that the real and 
imaginary parts of the DFT successfully imitate the analytic expression. 
The phase spectrum, on the other hand, shows a noisy pattern. The reason 
for the noisy phase spectrum is because the absolute values of the real 
part data are too small. Recall the definition of the phase angle of a 
complex number (expression C.12). It is obvious from the definition that 
for complex numbers whose real parts are relatively small, the phase values 
may vary arbitrarily. In other words, the noisy pattern of phase spectrum in 
Example 12.3 is nothing more than numerical noise. The phase spectrum 
exemplifies that we occasionally need to remove the numerical noise via
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additional scripts. And, in case of Example 12 3. we can use the following 
script:

fo r  id  = l :n s
i f  x f_ ab (id )  < 0 . 1  

x f_ p h (id )  = 0 .0 ;
end

end

Example 12.4 Plot jc(/) and |X ( /) | of Example 12.3. Change values 
of both f s  and ns to 500, and plot.v(f) and |X (/) | once again.

Solution

/( 8 )  / ( H z )

Example 12.4 exhibits the cosine function of Example 12.3 along 
with its amplitude spectrum. We consider two different cases: x\ (t ) and 
|Xi ( / ) |  are plotted with

/ ,  = 1000 Hz and N  = 1000,

while *2 (0  and |X2 ( / ) | are generated with

f s = 500 Hz and N = 500.
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The two time functions, x \ (t) and x2(t), show almost identical graphs for
1 second. In case of amplitude spectra, |X i( /) | and \X2(f ) \  exhibit two 
amplitude peaks at identical frequencies but with different heights. In 
fact, the height of the impulsive peaks are given as N /2,  in this specific 
case. Generally speaking, the heights of peaks in amplitude spectra are 
dependent on sample numbers. And, within an amplitude spectrum, an 
amplitude value itself does not provide any significant meaning. What 
is significant within an amplitude spectrum is the relative variation of 
amplitude.

12.3 FILTERING

We have introduced in Chapter 10 the concept of filters and discussed 
amplitude spectra of several filter types. We have also argued that the RC 
and RL circuits can be used as analog filters. Utilizing the FFT, we can 
design digital filters. A good example of digital filtering is in Example 
12.2, where we remove frequency components higher than 2000 Hz. In 
other words, the frequency domain processing demonstrated in Example
12.2 is equivalent to the low pass filtering.
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Figure 12.4: An example of low pass filter
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Figure 12.5: An example of high pass filter
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Figure 12.6: An example of band paiss filter
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Figure 12.4 exemplifies amplitude spectra of low pass filters. Time 
domain representation of the low pass filter is also depicted in Figure 12.4. 
The cutoff frequency may differ for each different filter, but Figure 12.4 
well demonstrates the nature of low pass filters in time and frequency 
domains. Figure 12.5 illustrates the nature of another type of filters: high 
pass filters. Examples of band pass filters and band stop filters are also 
presented in Figures 12.6 and 12.7. Note that filters In Figures 12.4through 
12.7 are related as follows:

*2(0 = <5(0~*i(0 and X2{f )  = 1 -  X i( /) ,
*4(0 = <5(0 -  *3(0 and X4( / )  = 1 -  X3( /) .

Example 12.5 Consider the following function:

* o . ( 0  =  s i n ( 2 7 r / ; 0  + c o s ( 2 ^ / 2 0 .

with / 1  and /2  are 400 Hz and 420 Hz, respectively. Sample the above 
function for a second with the sampling frequency f s = 2000 Hz. Add 
random noise to the sampled data. The mean and standard deviation
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of the random noise should be 0 and 3, respectively. We now call the 
noisy data x\  (f). Reduce the noise level of x \ (r) via using a BPF that 
passes frequency components between 390 and 430 Hz. We call the 
noise-reduced dataX2 (t). Plot jci(/), ( / ) | ,  JC2(/), and |X2( /) |.

Solution

clear;
fs = 2000;
ns = 2000;
dt = 1/fs;
df = l/((ns-l)*dt);
ta = (0:dt:(ns-l)*dt)’;
fa = (0:df:(ns-l)*df)’;
if mod(ns,2) == 0

fa = fa - ns/2*df;
else

fa = fa - (ns-l)/2*df;
end

xtO = sin(2*pi*400*ta)+cos(2*pi*420*ta); 
xtl = xtO + 3*randn(ns,1); 
xfl = fftshift(fft(xtl));

bpf = zeros(as,1); 
for id = l:ns

if ((abs(fa(id)) > 390) kk (abs(fa(id)) < 430)) 
bpf(id) = 1.0;

end
end
xf2 = xfl.*bpf;
xt2 = ifft(ifftshift(xf2));

figure(5);
subplot(2,2,1); plot(ta.xtl); 
xlabeK’t (s)’); axis([0 1 -10 10]); 
subplot(2,2,2); plot(fa,abs(xf1)); 
xlabeK’f (Hz)’); axis([-1000 1000 0 1000]);
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s u b p lo t ( 2 ,2 ,3 ) ; p l o t ( t a ,x t 2 ) ;
Ị x lab e lC ’t  ( s ) ’ ) ;  a x is ( [0  1 -10 10]); 

s u b p lo t ( 2 ,2 ,4 ) ; p l o t ( f a , a b s ( f f t s h i f t ( x f 2 ) ) ) ; 
x lab e lC ’f  (H z)’ ) ;  ax is ([-1 0 0 0  1000 0 1000]);

X,(I)

0.4 0.6
f(s)

-1000

-1000 -500
/(Hz)

500

1000

1000

800 ;
600

400

200 1

0
1000

Finishing Example 12.5, readers are encouraged to check the effect of 
the noise reduction by the following command:

soundsc(xtO.fs); 
soundsc(xtl,fs); 
soundsc(xt2,fs);

12.4 WINDOWING

Sampling a signal means that we truncate sampling at one moment and 
limit thè signal tơ  a' finite length. This trancation usually accompanies 
abrupt changes at either end of signals and may cause numerical artifacts 
called the spectral leakage. Consider, for example, the time signal J t ( r )  

shown in Figure 12.8. The time signal is a sinusoidal signal that con­
tains only one frequency component, and its amplitude spectrum should
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Figure 12.8: An example of spectral leakage

only exhibit two impulsive peaks. Unlike the spectrum in Example 12.4, 
however, the amplitude spectrum in Figure 12.8 shows that the signal 
contains a range of frequency components. Moreover, the phase spectrum 
even presents an interesting trend. This anomalous spectral pattern is the 
spectral leakage that arises from the sudden beginning or termination of 
sampling.

To reduce the spectral leakage, one may multiply data samples with 
windows that enforces smooth variation at the start and end of a sampling:

x [n] = x[n] w[n].

Countless windowing sequences have been implemented, and several 
representative ones are as follows:

Hann window: w[/i] = 0.5 -  0.5 cos \ - ^ —  \ ,
\ N - I J

Hamming window: w[n] = 0.54 -  0.46cos ( ^nn ) ,
\ N -  1/

Blackman window: w[n] = 0.42 -  0 .5cos ( — — ) + 0.08cos ( | ,
\ N -  1/ \ N - \ I

( (2/i N  1 \
---- --------- with (tr < 0.5).

2cr2(N -  \ ) )
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Figure 12.9: Plots of several representative windows
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Figure 12.10: An example of windowing. Spectral leakage demonstrated 
in Figure 12.8 is reduced by using Hann window.

for n = 0, 1, 2, • • • N -  1. Figure 12.9 shows the graphs of those win­
dows, and Figure 12.10 demonstrates that one can significantly reduce the 
spectral leakage shown in Figure 12.8 with the use of Hann window.
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PROBLEMS

Problem 12.1 Suppose you acquire a time series data for 20 seconds 
with a sampling interval 5 ms. What is the frequency range that your data 
can effectively represent?

Problem 12.2 Suppose you acquire a time series data for 10 seconds 
with a sampling interval 2 ms. What is the frequency range that your data 
can effectively represent?

Problem 12.3 You want to measure signals whose target frequency range 
is between 20 kHz and 5 MHz. What is the maximum allowed sampling 
interval? And what is the minimum required sampling duration?

Problem 12.4 You want to measure signals whose target frequency range 
is between 5 kHz and 1 MHz. What is the maximum allowed sampling 
interval? And what is the minimum required sampling duration?
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Chapter 13

13.1 DIFFERENT FORMS OF FOURIER TRANSFORM

Before introducing another topic of Fourier analysis, it is necessary to 
point out that there exist different versions of Fourier transform. Below 
are examples of Fourier transform pairs that are equally valid with each 
other.

x(t ) = ^ - f  X(oj)eJ“' doj <=> X(u>)= f  x (t)e~jloldt
LTl J  _oo J  —oo

/ °° i r°°
X(io) eJajl dto <=> X( cj) = —  /  x(t) e~J0JI dt

00 J -oo

1 r°° l r°° .
x(t )  = ——  I X(oj) eJOJI dio <=> X(a>) = —__ I x(t) e Jwl dt

y 2 n  J -oo  V 2 7t J -oo

l r°° r°°
x(t )  = —  /  X(oj )e J0JI du> o  X{u)) = / x(t) eJWI dt

2 7T J - o o  J —oo

Note that the location of the factor 1 /2/r does not matter. Note also that 
eJU,t and e~jwl may interchange their locations. The first Fourier transform 
pair is the one we are using in this study.

Depending on which discipline we belong to, we may use one of many 
different forms of Fourier transform pairs. Furthermore, depending on the 
form of the Fourier transform pair, most of the mathematical discussion 
covered in this study should be expressed in a different way. As a result of 
that, it is important to remember that any equation or experiment result 
we intend to use might be based on a Fourier transform pair different ffofn 
the one we are using.

13.2 TWO-DIMENSIONAL FOURIER TRANSFORM

As was mentioned in Chapter 1, there can be multidimensional signals. 
A good example of multidimensional signal processing is the image pro­
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cessing (Gonzalez and Woods 2018). In this study, we only consider 
processing static images that do not vary with time. In other words, we 
consider image signals that only vary with space. Additionally, we suggest 
making clear distinctions between time and spatial signals as follows: time 
signals are Fourier transformed to frequency domain, while spatial signals 
are transformed to wavenumber domain.

Recall that angular frequency u  is defined as

where T  denotes the period of a time signal. Similarly, wavenumber k is 
defined as

where A. denotes the wavelength of a spatial signal. Fourier transform of a 
spatial signal i(x) can thus be expressed as

Images are 2-dimensional signals that vary along two spatial axes, and we 
extend the above expressions as

1 i*  OO f*  o o

i(JC, y)  = ^  J  J  I (kx, ky) e H ^ y y '  dkx dky , (13.6)

where kx and k y are x-directional and y-directional wavenumbers, respec­
tively. Expressions 13.5 and 13.6 provide mathematical prototypes of 
2-dimensional Fourier transform.

(13.1)

(13.2)

(13.3)

and its inverse Fourier transform as

(13-4)

and
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Discrete Fourier transform (DFT) between space and wavenumber 
domain is not different from the one between lime and frequency domain. 
And we can readily express a discrete Fourier transform pair as

/V-l v-1
/[m l = £  i[n] e -J2nmnlN and i|/i | ' 1' " 1 e '2*"1”1"  ■

,1=0 ,•!=<)

Extending DFT into 2-dimension is also straightforward such that

Ny~l  A T ,-|

/[m.v,m v| = Y j Y j ' I” v- «xl ^ “/2/r' A' +"'v"v7 , (13.7)
n,=0 n,=0

and its inverse discrete Fourier transform is

/Vy-l \ x-\
/[rtf, fly) = — V V ¡ [ m x , m y \ e j l M " ' l N ' + m y n y / N y ) t ( 1 3  8) 

Nx" y  my=0mx=0

where Nx and Ny represent the jr-directional and v-directional lengths of 
a 2-dimensional array, respectively.

We have discussed in Chapter 11 that DFT is defined for periodic 
sequences. Same is true for 2-dimensional problems. In other words,

- N . N. 2 N.
- N . .

a b  a b  m b

a h
A / „  i -

• IN.

a b

I.

ab  ab  r i h

Figure 13.1: Periodicity related to 2-dimensional discrete Fourier trans­
forms
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expressions 13.7 and 13.8 are defined for 2-dimensional periodic arrays. 
Most of the 2-dimensional images that we handle are, however, not periodic. 
We should therefore keep in mind that DFT algorithms always regard 
nonperiodic images that we provide as periodic arrays. DFT algorithms 
also regard the 2-dimensional pixel numbers Nx and N v of a 2-dimensional 
image as the x-directional and y-directional wavelengths, respectively. 
Figure 13.1 depicts the periodicity related to the 2-dimensional DFT.

A 2-dimensional discrete Fourier transform is composed of a series of
1-dimensional transforms. Consider, for example, the 2-dimensional array 
shown in Figure 13.2 (a). The size of the 2-dimensional array is Nx by 
Ny along the x  and y  axes directions, respectively. Among the two axes 
directions, one may arbitrarily choose a direction and start performing 1 - 
dimensional DFTs. Choosing y-axes direction first, as illustrated in Figure
13.2 (b), one needs to perform Nx times of ̂ -directional DFTs. And then, 
one switches direction and performs Ny times of jc-directional DFTs. In 
other words, Nx + Ny times of 1-dimensional DFTs in total constitute a 
single 2-dimensional transform.

While using MATLAB one does not need to perform a large number 
of 1-dimensional discrete Fourier transforms, because MATLAB function 
f  f  t2  automates aforementioned processes to achieve a 2-dimensional DFT. 
Likewise, inverse DFT of a 2-dimensional array can be easily achieved by 
the MATLAB function i f  f  t2 . There are, however, things that demand 
our special our attention. We have studied with Examples 12.2 and 12.5 
that it is preferable to perform frequency domain shifting right after a 
DFT or before an inverse DFT. With regard to a 2-dimensional image 
processing, we also suggest to shift wavenumber domain data immediately 
after the 2-dimensional DFT. We then proceed with signal processing

rr 0 1 N - 1
g A FT

i.

iM • V|< ■Vi
Ny-  1

(a) (b) (c)

Figure 13.2: 2-dimensional discrete Fourier transform as a combination 
of 1 -dimensional transforms
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Figure 13.3: 2-dimensional fast Fourier transform via MATLAB. Lower 
case letters represent space domain sequences, while upper 
case letter represent wavenumber domain sequences.

within the wavenumber domain and back-shift the wavenumber domain 
data immediately before the inverse DFT.

The procedure of a 2-dimensional shifting is illustrated in Figure 13.3.
2-dimensional DFTs arrange wavenumber domain data in such a way 
that the highest wavenumber components locate at the center of the 2- 
diimensional arrays. Similarly to the 1-dimensional Fourier analysis, which 
we have studied in Chapter 12, it is preferable to rearrange the wavenumber 
domain arrays so that zero wavenumber components situate at the center 
o f the 2-dimensional arrays. The MATLAB function f  f t s h i f t  does the 
rearrangement and allows one to safely perform the rest of wavenumber 
domain processing. Note that within the wavenumber domain, any two 
points on the opposite side of the center have identical amplitude but oppo­
site sign of phase value. Therefore, while performing wavenumber domain 
processing, one has to keep the central symmetry o f the 2-dimensional 
arrays. Losing the central symmetry yields a space domain array that is 
full of complex numbers.

133 FIRST LADY OF THE INTERNET

We demonstrate 2-dimensional DFT via one of the most famous images 
within the image processing community. Figure 13.4 shows the image 
called ’’Lenna”. Lenna has been a standard test image in the field of image
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Figure 13.4: The First Lady of the Internet

processing since 1973. And the lady within the image is known to be 
the ’’First Lady of the Internet”. The amplitude and phase spectra of 
Lenna is shown in Figure 13.5. Note that the wavenumber domain data are 
already rearranged such that the center of the spectral images correspond 
to zero wavenumber. Note also that the spectral images do exhibit central 
symmetry.

One may wonder what the significance of phase spectra are, especially 
in comparison to amplitude spectra. One may further regard phase spec­
trum less significant than amplitude spectra. It is true that most of the time, 
we take a look at amplitude spectra instead of phase spectra. However, 
that does not necessarily mean phase information is less significant than 
amplitude information. Figure 13.6 shows an interesting test result. We 
at first keep both the amplitude and phase information of Leona and do 
the inverse DFT. The inverse DFT, of course, yields the original image.
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Figure 13.5: Amplitude and phase spectra of Lenna



Figure 13.6: Significance of the amplitude and phase spectra illustrated 
via Lenna

Secondly, we replace the amplitude information with a random noise but 
keep the phase spectrum as it is. Surprisingly, the inverse DFT produces 
an image that still preserves the outline of the First Lady of the Internet. 
Finally, we preserve the amplitude information but destroy the phase in­
formation. The inverse DFT now reconstructs an image that is unable for 
one to identify, the, content of it. Figure 13.6 thus demonstrates that al­
though we mainly use amplitude spectra to represent certain procedures of 
wavenumber domain processing, we should never ignore the significance 
of phase information.

Figure 13.7 shows examples of 2-dimensional low pass filtering. The 
amplitude spectra in the upper row qualitatively illustrate the extent of 
high wavenumber components that are being filtered out. Underneath each
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Figure 13.7: Low pass filtering of Lenna

Figure 13.8: High pass filtering of Lenna

different amplitude spectra are images that come from the inverse DFT 
of the low pass filtered wavenumber domain data. It is obvious that the 
more high wavenumber components filtered out, the more blurry image 
we get. Figure 13.8, on the other hand, exemplifies high pass filtering. It is 
evident that the more low wavenumber components removed, the shaker 
image the inverse DFT yields. It is also noteworthy that high pass filtering 
can be useful for detecting edges of an object.

Filtering out certain wavenumber components is not the only thing me 
can achieve in the wavenumber domain. One may also reinforce ceriain 
wavenumber components. Figures 13.9 and 13.10 illustrate what Lema 
would look like if one amplifies low wavenumber and high wavenam-
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Figure 13.9: Amplifying low wavenumber components of Lenna

m
Figure 13.10: Amplifying high wavenumber components of Lenna

ber components, respectively. Amplifying low wavenumber components 
yields soft or mild looking images, whereas amplifying high wavenum­
ber components accompanies images that look rough and wild. Figures
13.7 - 13.10 well demonstrate that 2-dimensional DFT can be successfully 
utilized for digital image processing.

13.4 LAPLACE TRANSFORM AND Z-TRANSFORM

Since the beginning of Chapter 7, we have studied what Fourier analysis
i s about. And our discussion has been focused on Fourier transform. We 
should now introduce another integral transform that is widely used in 
s-cience and technology. That is Laplace transform. We do not aim to
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cover details about the integral transform. Instead of that, we intend to give 
a brief introduction about Laplace transform and discuss the relationship 
between Fourier and Laplace transforms. For more details about Laplace 
transform, readers are encouraged to refer to other literature that include 
Oppenheim and Willsky (1997), Oppenheim and Schafer (2010), or Lathi 
and Green (2017).

Consider a time function x{t) that is defined for t > 0. The Laplace 
transform X(s) of the time function is described as

where cr and u> are the real and imaginary parts of s, respectively. Ex­
pression 13.9 is known as the one-sided or unilateral form of Laplace 
transform, because the integration range is the positive time axis. We 
encounter only positive time signals, and thus the unilateral form is a more 
commonly used transform than the two-sided or bilateral form of Laplace 
transform that is defined as

The advantage of bilateral Laplace transform is that it can handle both 
causal and noncausal signals over -oo to oo.

The Laplace transform X(s) is not always defined over the entire s- 
plane, and the region of the ¿-plane that X(s) converges is called the region 
o f convergence (ROC). As depicted in Figure 13.11, the ROC of X(s) 
commonly consists of strips parallel to the imaginary axis in the 5-plane. 
If x(t)  is of finite duration and absolutely integrable, the ROC is the entire
5-plane. The inverse Laplace transform is also defined within the ROC 
and expressed as

Comparing expression 13.11 with expression 9.1. one can notice that 
Fourier and Laplace transforms are closely related. In fact, one may regard

And the complex parameter s is expressed as

(13.9)

5 = cr + juj. (13.10)

(13.11)

(13.12)
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Figure 13.11: Region of convergence (ROC) of the Laplace transform

Fourier transform as a special case of Laplace transform with a  = 0 and 
_v = jio. For circuit analysis, Laplace transform is more widely used than 
Fourier transform because the Laplace integral converges for a wider range 
o f signals and automatically incorporates initial conditions.

One of many common properties between Fourier and Laplace trans­
forms is the convolution property. Consider, for example, a linear time- 
invariant (LTI) system whose impulse response is h(t). We denote the 
Laplace transform of h(t) as H(s) and call it the transfer function or sys­
tem function of the LTI system. The convolution property of Laplace 
transform then associates the following transform pair:

The transfer function is, in fact, a more generalized concept of the fre­
quency response that we have studied in Chapters 8 and 10. Transfer 
function of a system describes how the output behaves with respect to 
the input. Given the system transfer function, one can perform extensive 
system analysis and design without having to apply specific signals to the 
system.

y ( t ) = x ( t ) * h ( t )  »  r (s )  = X ( j) f f ( j ) .

Therefore, the transfer function can be also expressed as

(13.13)

(13.14)

LTI System

Figure 13.12: Concept of transfer function
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Fourier and Laplace transforms are defined for continuous-time func­
tions. We have discussed in Chapter 11 that one can perform Fourier 
analysis of a discrete-time sequence via discrete-time Fourier transform 
(DTFT). With regard to the discrete-time sequence, we can also perform 
a transform called the z-Transform. The relationship between Fourier 
transform and DTFT is similar to the one between Laplace transform and 
z-Transform. In other words, z-Transform is a discrete-time counterpart 
of Laplace transform. The z-Transform X(z)  of a time sequence jc [«] is 
defined as

OO

A'(z) = Z * [ n ] z - " ,  (13.15)
n=0

where

z = es = ecr+jw. (13.16)

Expression 13.15 is known as the unilateral form of z-Transform. And 
one can also define the bilateral form of z-Transform as

oo

X ( z ) =  2  x[n]z~n. (13.17)
n=-oo

Note that with cr = 0 and s = jio , expression 13.17 reduces to expression 
11.5. Note also that we have already encountered z-Transform in Chapter
6 and used it for calculating discrete-time convolutions.

Im

Figure 13.13: Region of convergence (ROC) of the z-Transform
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Figure 13.14: Discrete-time Fourier transform (a) vs z-Transform (b)

Similarly to Laplace transform, z-Transform is not always defined over 
the entire z-plane, and the region ofc-plane where X(z)  converges is called 
the region o f convergence (ROC). As depicted in Figure 13.13, the ROC of 
X(z)  commonly consists of a ring in the ¿-plane centered about the origin. 
The inverse z-Transform is only defined within the ROC and expressed as

Figure 13.14 highlights similarities / differences between DTFT and 
z-Transform. Both DTFT and z-Transform associate time sequence values 
with powers of a complex number. In the case of DTFT, time sequence 
values are associated with complex numbers on the unit circle of the z- 
plane. In the case of z-Transform, on the other hand, time sequence values 
are associated with complex numbers that stay on a spiral path of the 
2-plane.

Just as Laplace transform is useful in handling signals that do not have 
Fourier transform, z-transform enables us to treat discrete-time signals 
that do not have DTFT. Also, just as Laplace transform converts integro- 
differential equations into algebraic equations, z-transform converts dif­
ference equations into algebraic equations that are e&sief to manipulate 
and solve. Although the properties of z-transform are similar to those of 
Laplace transform, there are some differences. Like Laplace transform, 
z-transform is applicable to systems with initial conditions. z-Transform 
is fundamentally important to digital signal processing, digital communi-

(13.18)
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cations, and linear control systems. Readers are strongly encouraged :o 
refer to Oppenheim and Schafer (2010) for more detailed discussion.
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GREEK ALPHABETS

Appendix A

Upper Case Lower Case Name
A a Alpha
B P Beta
r y Gamma
A 6 Delta
E e, £ Epsilon
Z Ç Zeta
H 1 Eta
0 0,& Thêta
I i Iota
K K,X Kappa
A À Lambda
M Mu
N V Nu
¿1 i Xi
0 o Omicron
n n, tj Pi
p P<Q Rho
z (T,Ç Sigma
T T Tau
r V Upsilon
o Phi
X * Chi
¥ <P Psi
n U) Oméga
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MATH FORMULAS

Appendix B

B .l TRIGONOM ETRIC IDENTITIES

cos(-*) = +cos.v (B.l)
sin(-jc) = -sin .r  (B.2)

cos(* + n/2)  = -  sin* (B.3)
cos(* -  n/2)  = + sin* (B.4)
sin(* + n/2)  = + cos* (B.5)
sin(* -  n/2) = -c o s *  (B.6)

cos(* ± n) = -  cos* (B.7)
sin(* ± tt) = -  sin* (B.8)
cos(* ± 2n) = +cos* (B.9)
sin(* ± 2n) = + sin * (B. 10)

cos(* + y) = cos* cos y -  sin* sin y  (B.l 1)
cos(* -  y) = cos* cos >> + sin* sin y (B.12)
sin(* + y) = sin * cos y + cos* sin y  (B.l 3)
sin(* -  y) = sin* cos y -  cos* sin y  (B.14)

2 cos * cos y = cos(* + y) + cos(* -  y)  (B.l 5)
2 sin*sin v = cos(* -  y) -  cos(* +y) (B.16)
2 sin* cos y = sin(* + y) + sin(* -  y) (B. 17)
2 cos* sin y = sin(* + y) -  sin(* -  y) (B.l 8)
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cos2 x + sin2 x  = 1 (t. 19)

cos(2x) = cos2 x -  sin2 x
= 2 cos2jc - 1  = 1 -  2 sin2* (i.20)

sin(lr) = 2 sin* cos*

2 1 +cos(2*)cos x  = ------ -------
2

. ? 1 -  cos(2r)
sin Jt = ------ -------

ejx = co sjc  + j  sin*

e-ix + e JX
c o s j c  = -------- ---------

2
pjx —

sinjc = ------------
2]

B.2 EXPONENTIAL / LOGARITHMIC IDENTITIES

e V  = (E.27)
ex/ey = (E.28)
(ex)y = exy (E.29>

ln (.xvy) = ln x + ln y  (E.30>
ln (x/y)  = ln x -  ln y (E.31)
ln(jcy) = jylnjc (E.32)

e]nx = x (E.33>
ln (ex) = jc  (E34>

(1.21)

(1 .2 2 )

(1.23)

( E . 2 4 )

(E.25)

(E.26)
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B.3 INDEFINITE INTEGRALS

J  a dx = ax + C (B.35)

[  ax" dx = .v',+l + C for n  *  -1  (B.36)J n+ 1

J  cos(a.v) dx = -  sin(«.v) + C (B.37)

J  sin(a.i)ii* = - -  cos(a.v) + C  (B.38)

/

I
X I

cos2(ax) dx = -  + —  sin(2fljc) + C (B.39)
2 4 a
x  1

sin2(a;t) dx = -  -  —  sin(2«.r) + C (B.40)
2 4 a

/ 1 x
xcos(ax)  dx = —z cos(a*) + -  sin(a-r) + C (B.41)

a1 a
/ 1 x

x  sin(aAr) dx = —.r sin(ajt) —  cos(ajt) + C (B.42)
a 2 a

/

/

eaxdx = -  eax + C (B.43)
a

xeax dx = - e ax- X :  eax + C  (B.44)
a a1

J  - d x  = a \ n x  + C (B.45)

J  ln(ajc) dx = x  ln(ijjc) -  x  + C  (B.46)
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B.4 SUMS

Appendix B. MATH FORMULAS

k = 1 + 2 + 3 + • • • + /1  =
*=i

Z  k 2 = l 2 + 22 + 32 + • ■ ■ + n2 = 
*=i

J V  = I3 + 23 + 33 + ■•■ + «
*=i

n(n + 1)

2 n( n  +  l ) ( 2 / i  +  1)

= (1 +2 + 3 + --- + n)2 =
n ( n +  1)

( B .4 7 )

(B.48)

(B.49)

V _ L _ _ L  J _  _L -  Z i
f-j'ik2 ~ T 2 + 22 + 32 +  _ "6"k- 1

(B.50)

ar* = a + ar + a r 2 + • • • + arn
k=0

a ( l - r n+1) a ( r " +1 -  1)

1 -  r  "  r  — 1

a r *  =  a  +  a r  +  a r 2 +
t=o

1 - r
for |r | < 1

(B.51)

(B.52)

Readers are encouraged to refer to Gradshteyn and Ryzhik (2007) for more 
comprehensive lists of math formulas.
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COMPLEX NUMBERS

Appendix C

C .l EULER’S FORMULA

Compromising mathematical rigor, one may regard Taylor series as ex­
panding an arbitrary function in the form of infinite power series:

Some functions do not have Taylor series. And, for a function that has Tay­
lor series, the series usually converges within a finite range of x. There are, 
however, functions that, regardless of the value of x, always do converge. 
Sine, cosine, and exponential functions have this nice property.

Consider Taylor series expansion of the exponential function:

Assigning x = 0 reveals that ao must be 1. Differentiating the above 
expression, we write

ex = a\ + 2 a2x  + 3 a^x2 + 4 a^x3 + 5 a±x4 + • • • .

Assigning x = 0 once again shows that at is 1 too. Differentiating once 
again, we derive

e x = 2 • 1 02 + 3 • 2 a$x + 4? 3anx2 + 5 ■ 4a+x3 + 6 ■ 5.asJC4 + •• : .

It is now clear that a2 is 1/2!, and, repeating the process, we deduce that 
the Taylor series expansion of the exponential function is

In the same manner, one can derive Taylor series expansion of cosine 
and sine functions as

f ( x )  = ao + a\x + a2x2 + a^x* + a.}.*4 + • • ■ . (C.l)

ex = ao + a\x + a2x2 + a^x3 + a4jc4 + • • • .

x2
ex = l+ x  + —

2 3 4X X X
2! + 3! + 4! + ' ‘ '

(C.2)

(C.3)

(C.4)
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Appendix C. COMPLEX NUMBERS

Figure C. 1: Sine function vs truncated Taylor Series (expression C.5)

Figure C. 1 demonstrates the convergence of expression C.4. Sine furrtion 
(solid curve) is compared with the truncated Taylor series (dashed curves):

r2k+\
(C.5)

n
M x )  = £ ( - n *  

*=0 (2k + 1)!

It is obvious that, including higher order terms, the truncated Taylor sries 
better approximate the sine function.

Taylor series expressions of the exponential, cosine, and sine funcdons 
show that we are not limited to define those functions for only real vilues 
of x. In other words, Taylor series expansion enables one to define hose 
functions for any imaginary values of x. Substituting x  = jy ,  where y  
denotes a real variable and j  = V-T, expression C.2 becomes

\ 3  ( I {y, \5 I , - „ \ 6  ( jy )1
t l>m i + J y + a g . +  <M

2 !
„2

3!
+ 0 »  + (jy)

4!
„ 5

5!
5 (jy)b 

6 ! 7!

Jy 2! 3! 4! 5! 6! 7!

- H * H *
We can therefore establish the following expression:

oJ> - cos v + j  sin y. C. 6))
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In honor of the great teacher of us all. expression C.6 is called the Euler's 
formula. Replacing v by -y in expression C.6 gives

e J> = cos y -  j  sin y.

and combining the above two expressions yields the following useful 
expressions:

cos y =
eJy + e ' '

sin y =
eJy -  e~jy

2j

(C.7)

(C.8)

C.2 REPRESENTATION OF COMPLEX NUMBERS

Im Im

-> Re

(a)

Figure C.2: Representation of a complex number: (a) Rectangular form 
and (b) Polar form

A complex number z is written in rectangular form  as 

Z = x  + jy , (C.9)

where x  and y are the real and imaginary parts of z, respectively (Figure 
C.2 ia)). Another way of representing the complex number z is called the 
polar form , and the complex number z is specified by its amplitude |z| and 
phase angle 6 (Figure C.2 (b)):

(C.10)
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Appendix C. COMPLEX NUMBERS 

The rectangular and polar forms are associated by the following relatons:

and

|z| = y]x2 + y2.

6 =

tan-1 \y/x\  (first quadrant),
71 -  tan-1 | v / jc| (second quadrant),
7i + tan-1 \y/x\  (third quadrant),
2Ti -  tan-1 \y/x\  (fourth quadrant),

X = |z|cos0, 
y = |z| sin 6>.

(C.ll)

(C.l 2)

Therefore, a complex number z can be also represented in the exponertial 
form:

z = |z |cosö + j\z\ sinö = \z\e^e. (C13)

Note that complex conjugate (Figure C.3) of the complex number z is 
represented in the rectangular, polar, and exponential forms as follows:

z* =
x ~ j y  (rectangular form), 
\z\ /-6  (polar form),
\z\e~J° (exponential form).

(C 14)

Im

-> Re

Figure C.3: Complex conjugate of a complex number
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Figure C.4: Complex numbers on the unit circle

Note also that the exponential form enables one to see numbers shown in 
Figure C.4 with a new eye:

oII = ej2n\

j  = ei*‘2 _ ej(2n+l/2)x

-1  = e jn _  ej(2n*\)n^

- j  = e ^ > 2 _ ej{2n+3/2)*

with an integer n.

Example C .l Express the following number in the exponential form:

1

z=vf7?
Solution

_ (V3 + J) _ V3 + ./ _ cos(ff/6) + jsin (ff/6 ) _  1
(y/3- j ) (yf3 + j ) ~  4 2 2

Example C.2 We know 22 = 4 and j 2 -  -1 . What then are j J and 
2-' ? Express those two numbers in the rectangular form.
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Solution

j )  _  ( e y > / 2 y  =  e j'-nl2 = e -n/2  %  0  2 0 8

V  = <?ln(2'> = ejXni2) = cos(ln(2)) + j sin(ln(2)) * 0.769 + 0.639/.

Note however that these solutions are not unique (Brown and Churclill 
2014).

C.3 ARITHMETIC OF COMPLEX NUMBERS

With the following complex numbers:

z\ = *i + jy  i,
Z2 = *2 + 7>2.

the addition / subtraction of the two complex numbers are 

Zl ± Z2 = (*1 ± *2) + j(y\ ± J2).
Multiplying the two numbers we get

Z\Z2 = (xix2 - y i y 2)+ j( x 2yi +x\y2), 
and by division we have

_  (*1 + jy \ ) ( x 2 -  j y j )  _  x \x2 + y \y 2 .x2yi - * 1y 2
22 (x2 + j y 2)(x2 ~ j y 2) x \  + y\  1 x \  + y\

It is, however, hard to acquire geometric significance of the multiplication 
/ division with the rectangular form. The exponential form, on the ether 
hand, well delivers the geometric meaning.

Consider the following complex numbers:

zi = \zi\ej6[,

Z2 = \Z2\eJ02.

The multiplication / division of the two complex numbers are

Z 1Z 2  =  | Z l l |Z 2 k ' ,(fl|+e2).

£i = lZ|L/(gi-fe)
Z2 \Z2\
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Figure C.5: Powers of a complex number

The above expressions clearly show that multiplication involves addition 
of angles, whereas division involves subtraction.

This interesting feature of multiplying complex numbers can be high­
lighted by taking power of a complex number that lies on the unit circle 
(Figure C.5). The complex number z is eJn/6 and, thus, powers of the 
number are expressed in the exponential form as

zn _ gjnn/6

In other words, taking power of a complex number that lies on the unit 
circle is simply to rotate around the unit circle,

Example C.3 The number z in Figure C.5 is expressed in the rectan­
gular form as

i  = e7*/6 = cos(;r/6) + j  sin(?r/6) = —.

Calculate the other complex numbers in Figúre C.5 via'repeated' 
multiplications in the rectangular form. Finishing multiplications, 
convert the multiplication results into the exponential form.
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Solution

_2 _____ V3 + y V3 + y _ 2 + 2yV3 l+ yV 3
Z " ZZ_ 2 2 4 2

= cos(7r/3) + j  sin(;r/3) = ejn^ ,

2 2 4
4 3 . V3 + y -1  +yV3

z = * * = ■/ —  = — —

= cos(2;r/3) + y sin(2;r/3) = ej2n/i,

- i+ y V 5 V 5 + y  - 2 V3 + 2 y -V 5  + y
Z _ Z Z "  2 2 “  4 " 2

= cos(5;r/6) + y sin(5?r/6) = e7'5̂ 6.

Example C.4 Consider the number z shown below. Do not use cal­
culator and show that z2020 = z4.

Solution
= e- j  5jt/12

z24 = e -yiftr =  (tf-y2»)s =  ( 1 js  =  lt 

,2020 = ,24x84+4 = (,24)84 ,4 = ( j )84 ,4 = ,4
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PROBLEMS

Problem C .l Show that Taylor series expansion of the cosine function is
^ 2  ^. 4  ^. 6

COŜ  "  2! + 4! “ 6! + "

Problem C.2 Show that Taylor series expansion of the sine function is 

sinx = x - X-  + ^ - X-  + . . . .

Problem C.3 Express the following number in the exponential form:
1

i + y

Problem C.4 Express the following number in the exponential form:

z = 77}vT

Problem C.5 Calculate z2020 with the following Humber (do not use 
calculator):

1 ,V3
z = 2 + J T -

Problem C.6 Calculate z2022 with the following number (do not use 
calculator):

V3 .1
Z =  Y ~ J 2 '
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Problem C.7 Consider two complex numbers shown below.

Denote locations of z\zi,  2 1 / 2 2 . and 2 2 / 2 1  on the figure. 

Problem C.8 Consider two complex numbers shown below.

Denote locations of 2 1 2 2 , 2 1 / 2 2 . and 2 2 / 2 1  on the figure. 
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Im

Problem C.9 Consider two complex numbers shown below.

-¿►Re

Denote locations of Z\Z2. Z1/Z2, and 22/21 on the figure.

Problem  C.10 Consider two complex numbers shown below.

Im

Denote locations of z i22, z i/22, and 22/21 on the figure.
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ANSWERS TO PROBLEMS

Appendix E

CHAPTER 1 

1.1

t(s) /(H z)

1.2

0.2 0 . 4  0 . 6

ns)
0.8

/(H z)
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Appendix E. ANSWERS TO PROBLEMS

1.3

1.4

1.5 x(t) = u(t) u ( - t  + 1) + u(t -  1) r ( - t  + 2)

1.6 x(t) = 2r(t + 2 ) u ( - t  -  1) + u(t  + 1) u ( - t ) r ( - t  + 1)
+ «(i) u ( - t  + 1) + u(t -  1) r ( - t  + 2)

1.7 d

1.8 a

1.9 x[n] = 3<J[« + 1] +4<5[n] +3<5[n -  1]

1.10 jc[«] = Aö\n + 1] + 3ö[n] + 2ö[n -  1 ] + 8[n -  2]

296



CHAPTER 2

2.1 T = 4

2.2 T = 2

2 3  7b = 15

2.4 7b = 40

2.5 N0 = 30

2.6 N0 = 70

2.7 c

2.8 d

2.9 E = 1. *(/) is thus an energy signal.

2.10 E = oo and P = 1. *(/) is thus a power signal.

297



3.1 x(t)  = 4cos(2^i/3  + 2w/3)

3.2 *(r) = 4cos(;r//2 -  n/3)

3.3 jc[/i] = cos(2n(n -  8)/24)
v[/i] = x[3n -  4] = -cos(;r«/4)

3.4 x[n] = cos(2^(/7 -  5)/24) 
v[/i] = x[2n + 5] = cos(;i7i/6)

Appendix E. ANSWERS TO PROBLEMS

CHAPTER 3

- 4  - 2  0  2  4  - 4  - 2  0 2 4  - 4  - 2  0 2 4

t t t

3.6

*(0
4

-2

-4
- 4 - 2 0 2 4

t I

XgU)

4Ỉ

r - 1
UỊ

2

■4I

- 4  - 2 0 2 4

I
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3.7
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3.9

n

(

T T T  T T T
> < >

T T T T T T T T "
i

>>[/!] = -2jc[3« + 2]+1
- 1 0  - g  - 6  - 4  - 2  0  2  4  6  8  1 0

n

3.10

n

<

' Î Î Î Î Î Î T . T
< ►

T t ỉ T T T TT '
y[n]=x[2n-l]+l

- 1 0  - 8  - 6  - 4  - 2  0  2  4  6  X 1 0
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CH APTER 4

4.3 a

4.4 b

4.5

, P
l - h T

y M

1 i  u
i1 ..... _

- 310 -2 10

4*6

iUI, A D
t----- 1■ I I I

2  4  6

t
8 10 '5-2

v,(M y2(t)
Q  n

2  4  6

t
8 10

41.7 y[n] = *[n -  1] + x[n -  2]

4 8  y[n] = x[n\ + x[n -  2]

41.9 _v[n] = x[n -  1] -  2x[n -  3] +x[n - 4 ]

44.10 y[n] = lx[n\  -  ?)x[n -  \] + x[n -  2]
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5.1 x ( t )*h ( t )  = ti u(t)/6

5.2 xịt )  * h(t) = i3w(0/3

5.3 x(t) * h(t) = sin(nt) u( t) /n

5.4 jc(/) * h(t) = [1 -  cos(7T/)] u(t) m(2 -  t ) /n

5.5 jc(r) * h(t)

Appendix E. ANSWERS TO PROBLEMS

CHAPTER 5

- 4  - 2  0  2  4  6  8  1 0  1 2  1 4  1 6  1 8  2 0

t

5.6 x(t) * h(t)

t

5.7 d

5.8 b
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6.1 .ï |/i | * /j[rt] = n(n + 1 )(2/i + 1 ) u M /6

6.2 XM  *h[n] = (3"+l - 2 " +l)w|/i|

6-3 .V[/1J * h\n] = (a"+l -  bn+l) u[n]/(a -  b)

6.4 v[;i] * h[n] = cn(n + 1) w[rt]

6.5 X[/»] *h[n)=  0[n] + 2 ổ [ n - 1] -  3ổ[/i-2] + 2Ô[n-ĩ] -  2ổ[n-4]

6.6 * h[n] = -  2ỏ [ n - \ \  -  3ổ[n-2] + 2ổ[«-3] + 2ổ[n-4 \

6.7 h [ n ] = 2 ô [ n ] - 3 ỗ [ n - l ]

6.8 h[n\ = 2<5[rt—1] + ỗ [ n - 2] - ổ [ « - 3 ]  +ỏ[n—4]

6.9 y[n] = Jc[/|] * h \ [«] * (Ä2 [/i] * A3I/1] + /i4[n])

6.10

CHAPTER 6
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CHAPTER 7

Appendix E. ANSWERS TO PROBLEMS

7.1 Q = tt/3, ao = 2, a2 = 1, and ¿ 5 = 4

7.2 Q = 47T, am = 0, and bm =2 cos2 (mn)/m

7.5

7.6 X[-3]  = y/8
X [-2 ] = 1/4 
* [ - 1 ]  = -37/8  
X[0] = 3/2 
X [l] = 37/8 
X[2] = 1/4 
X [ 3 ]= -y /8

7.9 d

7.10 c
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CHAPTER 8

8« 1 4>m — ~&m

/(Hz)

8-2 time expansion = frequency compression

< » < 

.  I .

> { 

I T . IT,
11 r

)

i
»

-4 -3 -2 - 1 0 1 2 3 4
/(Hz)

# 3  ilfm = 6m ± n for m + 0
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8.4 <f/m = em

T T

-4 -3 -2 -1

1

1

i

2 3 4
/(Hz)

8.5 Ipm = 6m + nm/4

•

; I t . .  I . . 1 .
1

T
i

- 4 - 3 - 2 - 1 0  I 2 3 4
/(H z)

8.6 iftm = 0m -  2nm

- 4 - 3 - 2 - 1 0  I 2 3 4
/(H z)
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8.7 i¡/m = ft,,, + n / 2 (ni > 0). (Am = tìm -  re/2  (in < 0)

8.» ự/,

8-9 p  

8-10 i

7T' 2

- ĩt! 2
V f í l W ' V

- » - 3 - 2 - 1 0  I 2  3  4

/(Hz)

= 9m +  n ịm > 0), ìỊ/m = em -  7Ĩ (m < 0)

X/2

0

-/r/2
é -ỉ»

-4 -3 -2 - 1 0 1 2 3 4
/(Hz)

= 58 

p = 8.5

307



9.1 a

9.2 d

9.3 Y(oj) = X{oj) -  X(-u>) = 2/(ju>) + 2j  sin (xj/üj2

9.4 Y(<jj) = X{<jj) + X(-o») = 2/w2 -  2coso>/ti>2

9.5 y ( 0 = x ( t - 2 )
y(aj) = e- j2wX(oj) = 2e - i2“ sin üj/oj = («->" -  e~jiüJ)/(jcj)

9.6 / ( f )  = ö { t -  1) -  <5(f -  3)
jcjY(u)) = -  Í--'3“

9.7 ỵ(<j) = y¡3 = (*->" -  e-1**)Kjbt)

9.8 y(f) = - j c ( f - l )
K(w) = -e~ 'uX(ù)) = -2«?-'“  sin w/w = ( i - ' 2"  -  l)/(ỹw )

9.9 / ( t )  = ổ ( t - 2 ) - ỗ ( t )  
ju>Y(ùj) = e--'2"  -  1 
ý(w ) = ( e - ^  -  U /C M

9.10 K M  = -  jT2 *->«» A  = (e"y2íư -  1 )/(ỹíj)

Appendix E. ANSWERS TO PROBLEMS

CHAPTER 9
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10.1 h(t) = 40(0 -  8e-2'u(r)

10.2 h(t) = 2ổ( t ) -6e - ĩ,uự)

10.3

CHAPTER 10

,v(/) 0 |------------------- ------------- j------------ -------------------

: L __________ -  r__________________
• 1 0  - 8  - 6  - 4  - 2  0  2  4  6  8  1 0

I

10.4

6 

4

2

x(t) 0 
-2 

-4
- 6  ................................................................................  . . . .-10 -8 -6 -4 -2 0 2 4 6 8 10

t

y{t) = (e~2t -  e~3t) u(t)

1(0.6 y(t) = (e~‘ -  e~3r) « (0 /2

1*0.7 vc(t) = (8i>-'/2 -  8<T') u (/)V

1-0.8 ic(i) = ( 16e-2f -  8<r') y(r) A
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11.1 Jt[n] = ỗ[/ỉ] + 3Ỗ[/Í -  2] -  2ỗ[n -  3] + ổ[n -  4]

11.2 x[n] = 2ô[n\ -  ỏ[n -  2] + 3ô[n -  3] -  2ô\n -  4]

11.3 Re[X(ü>)] = 1 +2cos(tư) -3cos(2o»)
Im[X(w)] = - 2  sin(tư) + 3 sin(2o»)

11.4 Re[X(o»)] = 1 -  3cos(íi») + 2cos(2o»)
Im[X(w)] = 3sin(o>) -  2sin(2o>)

11.5 X[m ] = {1, 1, 5, 1}

11.6 X[m ] = {0, 4j ,  0, - 4 j )

11.7 x[n] = {2, - ì ,  1, -1}

11.8 jc[n] = {0, -2 , 0, 2}

11.9 X[2] = 2

11.10 X[3] = j

Appendix E. ANSWERS TO PROBLEMS

CHAPTER 11
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12.1 ./Inin = 0.05 Hz and /max

12.2 /min = 0.10 Hz and / max

12.3 At = 10~7 s and rmax = 5

12.4 At = 5 x 10-7 s and rmax

CHAPTER 12

APPENDIX C

C .3  z =

C .4  z = e 'j* '3

C .5  z2020 = - z

•C.6 z2022 = - l

100 Hz

250 Hz 

10~5 s 

2 x IQ'4 s
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C .  9

C .  10
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INDEX

Accumulator, 67, 68 
Amplitude modulation, 215 
Amplitude reversai, 41 
Amplitude scaling, 41 
Amplitude shifting, 42 
Amplitude spectrum, 4, 140, 146 
Analog-to-digital converter (ADC),

24

Capacitance, 59, 209 
Capacitor, 59, 68, 209 
Carrier signal, 215 
Complex number

Complex conjugate, 157,284 
Exponential form, 284 
Polar form, 283 
Rectangular form, 283 
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